Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels

2004-06-08
2004-01-2018
In the previous study design of two-component normal paraffin fuel was attempted considering the components and blending ratio. Only the thermodynamic analysis of combustion and analysis of emission characteristics were performed to evaluate the design performance. In this study mixture formation behavior and combustion phenomena of pure and mixed n-paraffin fuels were investigated by direct visualization in an AVL engine with bottom view piston. The experiments included laser-illuminated high-speed photography of the fuel injection phase and combustion phase to investigate physical differences. The results obtained for the proposed fuels are compared with the results of conventional diesel fuel. It was found that the two component normal paraffin fuels with similar thermo physical properties have very similar spray development pattern but evaporation rates are different.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine

2001-03-05
2001-01-0656
Simulations of DI Diesel engine combustion have been performed using a modified KIVA-II package with a recently developed phenomenological soot model. The phenomenological soot model includes generic description of fuel pyrolysis, soot particle inception, coagulation, and surface growth and oxidation. The computational results are compared with experimental data from a Cummins N14 single cylinder test engine. Results of the simulations show acceptable agreement with experimental data in terms of cylinder pressure, rate of heat release, and engine-out NOx and soot emissions for a range of fuel injection timings considered. The numerical results are also post-processed to obtain time-resolved soot radiation intensity and compared with the experimental data analyzed using two-color optical pyrometry. The temperature magnitude and KL trends show favorable agreement.
X