Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

Subsection Coordinated Control during Mode Transition for a Compound Power-Split System

2019-04-02
2019-01-1214
The power-split transmission is considered as one of the major technologies for hybrid electric vehicles. It utilizes two electric motors/generators (MGs) and a power-split device (planetary gear sets) to make the speed of internal combustion engine (ICE) independent from the vehicle speed, and in that way enables the ICE to operate in a high-efficiency region under all driving cycles. In this study, a compound power-split hybrid system integrated with a two-planetary gear train is proposed. To suppress the vehicle jerk intensity and improve the driving comfort during the transition from EV (Electric Vehicle) mode to HEV (Hybrid Electric Vehicle) mode, a torque coordinated control strategy is derived. Based on the analysis of mode transition in different sections, mathematical models of each section are deduced, respectively. Then a model-based torque coordinated control method is used to solve out the target output torques of ICE, MGs and brakes in each mode transition phase.
Technical Paper

Control Optimization of a Compound Power-Split Hybrid Transmission for Electric Drive

2015-04-14
2015-01-1214
A novel compound power-split hybrid transmission based on a modified Ravigneaux gear set is presented. The equivalent lever diagrams are used to investigate the electric operating modes for the hybrid powertrain, and then its dynamic and kinematic characteristics as well as efficiency characteristics are described in equations. A brake clutch mounted on the carrier shaft is proposed to enhance the electric driving efficiency for the hybrid transmission. Three types of electric operating mode are analyzed by the simplified combined lever diagrams and the system efficiency and torque characteristics for these electric operating modes are compared. A major influence on output torque of the hybrid transmission derived from the torque capability of motors and brake clutch is depicted.
Technical Paper

Development of a Compact Compound Power-Split Hybrid Transmission Based on Altered Ravigneaux Gear Set

2014-04-01
2014-01-1793
Several types of power-split hybrid transmissions are outlined and the strengths and weaknesses of typical compound power-split prototype designs are summarized in this paper. Based on an modified Ravigneaux gear set, a novel compound power-split hybrid transmission with compact mechanical structure is presented, its dynamic and kinematic characteristics in equations and operating modes are described, and then equivalent lever diagrams are used to investigate the proposed compound power-split device. Control strategies in different operating modes are discussed with the simplified combined lever diagram, and a global optimization method is implemented to find the optimum operation point for the hybrid powertrain. To evaluate the fuel economy of a hybrid car equipped with this hybrid transmission, a forward powertrain simulation model is developed and real vehicle performance tests are conducted in the chassis dynamometer.
Technical Paper

Economic Velocity Planning and Gear Decision of Plug-In Hybrid Electric Car Passing through the Bend

2022-03-31
2022-01-7011
Based on the information of the bend ahead which obtained through V2X, high-definition map (HD Map), vehicle positioning or other technologies, the velocity planning and online gear decision method are explored with the actual driving state of a P2 configuration plug-in hybrid electric car when it crosses the bend, to achieve better energy economy while ensuring the driving safety. In this paper, firstly, according to the basic characteristics of the hybrid car, a simplified simulation model is built in MATLAB / Simulink to provide a verification platform for the research. Subsequently, the calculation method of safety speed in bends is established by considering the driver factor and the critical conditions when the vehicle rolls over, sideslip or oversteer.
Technical Paper

Optimization Design and Performance Verification of the Second Generation Single Motor Plug-in Hybrid System (EDU) of SAIC Motor Vehicle Company

2023-04-11
2023-01-0446
SEAT Department of SAIC Motor Vehicle Company starts innovatively applying the single motor and P2.5 configuration scheme from EDU G2(Electric Drive Unit Generation 2), which consists of six engine gears and four motor gears. EDU G2 is very compact and adaptable through the coupling design. Gear coupling make the engine and motor coordination limited, so as to the high efficiency zone of the engine and the high efficiency zone of the motor cannot match in some working conditions, which affect the performance of the vehicle. Therefore, SEAT developed the second generation of single-motor plug-in hybrid system EDU G2 Plus EDU G2(Electric Drive Unit Generation 2 Plus), which realized the decoupling design of 5 engine gears and 2 motor gears, so that the power output of engine and motor is freely. With excellent power and economic performance, the vehicle has been well received by customers.
X