Refine Your Search

Topic

Search Results

Journal Article

Thermohydrodynamic Modeling of Squeeze Film Dampers in High-Speed Turbomachinery

2018-04-07
Abstract This work develops a comprehensive thermohydrodynamic (THD) model for high-speed squeeze film dampers (SFDs) in the presence of lubricant inertia effects. Firstly, the generalized expression for Reynolds equation is developed. Additionally, in order to reduce the complexity of the hydrodynamic equations, an average radial viscosity is defined and integrated into the equations. Subsequently, an inertial correction to the pressure is incorporated by using a first-order perturbation technique to represent the effect of lubricant inertia on the hydrodynamic pressure distribution. Furthermore, a thermal model, including the energy equation, the Laplace heat conduction equations in the surrounding solids (i.e. the journal and the bush), and the thermal boundary conditions at the interfaces is constructed. Moreover, the system of partial differential hydrodynamic and thermal equations is simultaneously solved by using an iterative numerical algorithm.
Journal Article

Reduction of Cyclic Variations by Using Advanced Ignition Systems in a Lean-Burn Stationary Natural Gas Engine Operating at 10 Bar BMEP and 1800 rpm

2018-12-14
Abstract In stationary natural gas engines, lean-burn combustion offers higher engine efficiencies with simultaneous compliance with emission regulations. A prominent problem that one encounters with lean operation is cyclic variations. Advanced ignition systems offer a potential solution as they suppress cyclic variations in addition to extending the lean ignition limit. In this article, the performance of three ignition systems-conventional spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI)-in a single-cylinder natural gas engine is presented. First, a thorough discussion regarding the efficacy of several metrics, in addition to coefficient of variation of indicated mean effective pressure (COV_IMEP), in representing combustion instability is presented. This is followed by a discussion about the performance of the three ignition systems at a single operational condition, that is, same excess air ratio (λ) and ignition timing (IT).
Journal Article

A Refined 0D Turbulence Model to Predict Tumble and Turbulence in SI Engines

2018-11-19
Abstract In this work, the refinement of a phenomenological turbulence model developed in recent years by the authors is presented in detail. As known, reliable information about the underlying turbulence intensity is a mandatory prerequisite to predict the burning rate in phenomenological combustion models. The model is embedded under the form of “user routine” in the GT-Power™ software. The main advance of the proposed approach is the potential to describe the effects on the in-cylinder turbulence of some geometrical parameters, such as the intake runner orientation, the compression ratio, the bore-to-stroke ratio, and the valve number. The model is based on three balance equations, referring to the mean flow kinetic energy, the tumble vortex momentum, and the turbulent kinetic energy (3-eq. concept). An extended formulation is also proposed, which includes a fourth equation for the dissipation rate, allowing to forecast also the integral length scale (4-eq. concept).
Journal Article

Numerical Investigation of the Characteristics of Spray/Wall Interaction with Hybrid Breakup Model by Considering Nozzle Exit Turbulence

2018-12-04
Abstract The spray/wall interaction plays a significant role on the mixture formation, combustion, and exhaust emissions. In the present study, the numerical code General Transport Equation Analysis (GTEA) is used to investigate the effect of fuel primary spray on the spray/wall interaction process. Taylor Analogy Breakup (TAB) model, Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT) model, and Hybrid breakup (Hybrid) model are used to simulate the fuel spray process. By comparing the radius and height of the impinged spray, the performance of these breakup models is evaluated. Then, Bai and Gosman (BG) and Zhang and Jia (ZJ) spray/wall interaction models are implemented into GTEA code to describe the complicated spray/wall interaction process, and these interaction models are validated by the radius and height of the impinged spray and the size and velocity of the secondary droplets.
Journal Article

A Distributed Parameter Approach for the Modeling of Thermoelectric Devices

2018-12-04
Abstract Thermoelectric devices (TEDs) allow direct electric and thermal energy mutual conversion. Because of the absence of working fluids and moving components, they can be used where it is not possible to refer to conventional technologies. In automotive applications, TEDs can give support in air conditioning and internal combustion engine (ICE) thermal heat recovery, contributing to increase the overall vehicle efficiency. Phenomena taking place in these devices are of a different nature and involve electric, thermal, and thermoelectric aspects, being highly influenced by materials’ characteristics and by system geometry. With the aim to offer a design tool, a TED mathematical model is presented in this article. The proposed model is based on a distributed parameter approach and has been conceived to consider heat transfer actual conditions. It accurately describes thermal energy production and removal terms due to Peltier and Joule effects.
Journal Article

PSO-Fuzzy Gain Scheduling of PID Controllers for a Nonlinear Half-Vehicle Suspension System

2018-11-19
Abstract The present article addresses the gain scheduling of proportional-integral-differential (PID) controllers using fuzzy set theory coupled with a metaheuristic optimization technique to control the vehicle nonlinear suspension system. The nonlinearities of the vehicle suspension system are due to the asymmetric piecewise dampers, quadratic tire stiffness, and the cubical spring stiffness. Conventional PID controller suffers from the low performance subject to modeling nonlinearities, while fuzzy logic controller (FLC), as a universal approximator, has the capacity to deal with the nonlinear, stochastic, and complex models. However, finding the optimal Mamdani FLC rules is still a challenging task in addition to a proper architecture of the membership functions (MFs). As a remedy to this drawback, particle swarm optimization (PSO) technique is employed in this article to improve the efficiency of the FLC-based PID controllers.
Journal Article

Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating

2018-12-14
Abstract Traditionally, in combustion engine applications, metallic materials have been widely employed due to their properties: castability and machinability with accurate dimensional tolerances, good mechanical strength even at high temperatures, wear resistance, and affordable price. However, the high thermal conductivity of metallic materials is responsible for consistent losses of thermal energy and has a strong influence on pollutant emission. A possible approach for reducing the thermal exchange requires the use of thermal barrier coating (TBC) made by materials with low thermal conductivity and good thermo-mechanical strength. In this work, the effects of a ceramic coating for thermal insulation of the piston crown of a car diesel engine are investigated through a numerical methodology based on finite element analysis. The study is developed by considering firstly a thermal analysis and then a thermo-structural analysis of the component.
Journal Article

Understanding the Origin of Cycle-to-Cycle Variation Using Large-Eddy Simulation: Similarities and Differences between a Homogeneous Low-Revving Speed Research Engine and a Production DI Turbocharged Engine

2018-12-14
Abstract A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed single-cylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratified-charge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken.
Journal Article

Improving Vehicle Rollover Resistance Using Fuzzy PID Controller of Active Anti-Roll Bar System

2018-12-20
Abstract The active anti-roll bar (AARB) system in vehicles has recently become one of the research hotspots in the field of vehicle technology to improve the vehicle’s active safety. In most off-road vehicles, high ground clearance is required while keeping all wheels in contact with the ground in order to improve traction and maintain load distribution among the wheels. A problem however arises in some types of the off-road vehicles when the vehicle is operated at high speeds on smooth roads. In such condition, the combination of the vehicle’s center of gravity position, large suspension stroke, and soft spring construction creates a stability problem, which could make the vehicle liable to rollover. This article analyzes a comparison of stability performance between passive and active anti-roll bar systems to improve rolling resistance. For active systems, two control strategies will be investigated. The conventional PID controller is firstly investigated and taken as a reference.
Journal Article

Diminishing Benefits of Federal Reformulated Gasoline (RFG) Compared to Conventional Gasoline (CG)

2018-12-20
Abstract The Federal reformulated gasoline (RFG) program originated with the 1990 Clean Air Act Amendments to address high ozone and air toxics levels in major urban areas. These areas include portions of 17 states and represent approximately 30% of the total U.S. gasoline volume. Initially, formulation changes were limited to addition of oxygen and reductions in benzene and fuel Reid vapor pressure (RVP) levels. These reformulations were intended to meet minimum emissions reduction targets for volatile organic compounds (VOCs), air toxics, and oxides of nitrogen (NOx) when compared to a 1990 baseline gasoline in a “1990’s technology” vehicle fleet. The United States Environmental Protection Agency (U.S. EPA) developed two computational models, the Simple Model in 1995 and the Complex Model in 1998, for use in demonstrating compliance with the regulations. This article reviews the derivation and evolution of the RFG program.
Journal Article

Knock Phenomena under Very Lean Conditions in Gasoline Powered SI-Engines

2018-03-13
Abstract Homogeneous lean operation is a well-known strategy for enhancing the thermal efficiency of SI-engines. At higher load points the efficiency is often compromised by the need to suppress knock. Experiments were performed to determine the knock characteristics of SI engines using homogeneous lean operation at λ values of up to 1.8 with various hardware configurations that are commonly used to increase the lean limit. Changing λ altered the eigenfrequencies of the combustion chamber and the highest energy excitation mode. Increasing λ from 1.0 to 1.2 increased the knock tendency and led to an earlier knock onset. However, further increases in λ significantly reduced the knock tendency and retarded the knock onset. The knock signal energy increased for higher λ values and constant knock tendencies. The differences in knock characteristics between the various λ values became more pronounced upon raising the intake temperature from 40 °C to 90 °C.
Journal Article

LSPI Durability, a Study of LSPI over the Life of a Vehicle

2018-03-01
Abstract Increasingly stringent emissions standards and the related efforts to increase vehicle fuel economy have forced the development and implementation of many new technologies. In the light-duty, passenger vehicle segment, one key strategy has been downsized, down-sped, boosted engines. Gasoline direct injection, coupled with turbocharging, have allowed for a drastic reduction in engine size while maintaining or improving engine performance. However, obtaining more power from a smaller engine has produced some consequences. One major consequence is the uncontrolled combustion known as Low Speed Pre-Ignition (LSPI). LSPI and the high energy knocking event which frequently follows have been known to result in fractured pistons and catastrophic engine failure. The propensity at which LSPI occurs has been linked to engine oil formulation.
Journal Article

Investigation into the Potentials of a Dedicated Multi-Point Injection System for a Production NG Single-Point Heavy-Duty Engine

2018-03-08
Abstract CNG is at present retaining a growing interest as a factual alternative to traditional fuels for SI engines, thanks to its high potentials in reducing the engine-out emissions. Increasing thrust into the exploitation of NG in the transport field is in fact produced by the even more stringent emission regulations that are being introduced into the worldwide scenario. Moreover, the transport sector accounts for the 27% of the overall energy consumptions and up to the 13% in terms of global emissions. The present paper aims at deeply investigating into the potentials of a heavy-duty engine running on CNG and equipped with two different injection systems, an advanced single point (SP) one and a prototype multi-point (MP) one. The considered 7.8-liter engine was designed and produced to implement a SP strategy and hence modified to run with a dedicated MP system.
Journal Article

Investigations on Drive Axle Thermal Behaviour: Power Loss and Heat-Transfer Estimations

2018-03-08
Abstract In the present study, a truck drive axle and its gear set are analysed. As the gear set is a hypoid or a spiral bevel one, sliding and so tooth friction are an important source of dissipation. Other losses are mainly due to rolling element bearings and oil churning. The power losses are first calculated according to relationships given in ISO technical report. As comparison with test results shows great discrepancies, some modifications of the previous formulae are proposed. The thermal exchanges are also reviewed. Finally, two methods to obtain the bulk temperatures of the gear set are compared: a classical approach which focuses on the gear set only and a global approach which considers the complete axle using the thermal-network method.
Journal Article

Resolution of HEV Battery Cooling System Inlet Noise Issue by Optimizing Duct Design and Fan Speed Control Strategy

2018-04-07
Abstract The power battery cooling system of a hybrid electric vehicle is composed of a fan and duct assembly with its inlet positioned inside the vehicle cabin. For the prototype vehicle considered in this work, the air inlet is positioned on the package tray due to limited feasible choices. When the battery temperature is over rated limit, the cooling fan starts to operate to cool the battery system. Propelled by the fan in the cooling system, the air in the passenger compartment enters the duct inlet, and rushes through the air duct to reach the battery pack to fulfill the intended cooling function. In this case, the rear seat occupants could clearly perceive the existence of an annoying whirring noise. In this paper, the characteristics of the battery air cooling system and its working principles are briefly described. The air inlet noise generation mechanism and its frequency characteristics are then analyzed.
Journal Article

Modelling of a Variable Displacement Lubricating Pump with Air Dissolution Dynamics

2018-04-18
Abstract The simulation of lubricating pumps for internal combustion engines has always represented a challenge due to the high aeration level of the working fluid. In fact, the delivery pressure ripple is highly influenced by the effective fluid bulk modulus, which is significantly reduced by the presence of separated air. This paper presents a detailed lumped parameter model of a variable displacement vane pump with a two-level pressure setting, in which the fluid model takes into account the dynamics of release and dissolution of the air in the oil. The pump was modelled in the LMS Imagine.Lab Amesim® environment through customized libraries for the evaluation of the main geometric features. The model was validated experimentally in terms of pressure oscillations in conditions of low and high aeration. The fraction of separated air in the reservoir of the test rig was measured by means of an X-ray technique.
Journal Article

Lean Burn Combustion of Iso-Octane in a Rapid Compression Machine Using Dual Mode Turbulent Jet Ignition System

2018-03-23
Abstract Turbulent jet ignition (TJI) is a pre-chamber initiated combustion technology that has been demonstrated to provide low temperature, faster burn rate combustion of lean and intake charge diluted air-fuel mixtures. Dual mode turbulent jet ignition (DM-TJI) is a novel concept wherein a separate air supply is provided for the pre-chamber apart from the conventional auxiliary fuel as supplied for TJI systems. The current study aims to extend the lean flammability limit of a gasoline-fueled engine using DM-TJI. Ignition delay time and combustion behavior of ultra-lean iso-octane/air mixture (Lambda ≅ 3.0) was studied using a TJI-based optically accessible rapid compression machine. High-speed fuel spray recordings in the pre-chamber were obtained using borescope imaging setup. Images of the reacting turbulent jet and subsequent combustion in the main chamber were captured using a visible color camera.
Journal Article

Co-Simulation Study of the Split-Crankshaft Engine’s Electromechanical Clutch Unit

2018-03-23
Abstract The main objective of active downsizing is to increase the power train efficiency. In order to consistently enhance an approach of active downsizing, it is inevitable to disable and additionally to disengage part of the overall engine displacement volume. The disengagement avoids the friction loss of the piston group as well as its crank- and valve-train section. Therefore, this beneficial approach, the Split-Crankshaft Engine (SCE) is currently under development at the Chair of Internal Combustion Engines in cooperation with the Gear Research Centre (FZG), at the Technical University of Munich. The SCE concept consists of two partial internal combustion engines, which are arranged inline. The Primary Engine (PE) is permanently running while the Secondary Engine (SE) can be switched on and off load-dependently during driving operation.
Journal Article

Complete Engine Thermal Model, a Comprehensive Approach

2018-04-18
Abstract Upcoming engine generations are characterized by both a general trend of increased specific-power and higher efficiency. This leads to increased thermal loads, compromising reliability, and simultaneously to a limited amount of heat under ordinary engine use. Heat is a valuable resource in providing passenger comfort and emission control. For these reasons the subject of engine thermal management is receiving increasing attention. This work presents a comprehensive study of the complete engine thermal behavior at relevant running conditions: rated-power, peak-torque and ordinary use. The work is further extended to the engine warm-up period. The result is a high-resolution complete engine thermal model, capable of simultaneously reporting the local temperature of any engine part, and the global engine heat balance at any engine load.
Journal Article

Experimental Investigation of the Influence of Engine Operating Parameters on a Rankine Based Waste Heat Recovery System in a SI Engine

2018-04-18
Abstract One of the most promising techniques to reduce carbon dioxide (CO2) emissions of future combustion engines is the use of waste heat from exhaust gas with a Rankine cycle. The target of this study was to investigate the influence of engine operating parameters such as ignition timing, coolant temperature and injection parameters on the efficiency and performance of Rankine based waste heat recovery systems (WHR). This was done to gain basic knowledge about the influences of the engine operating parameters which helps to explain the system behavior under different operating conditions and second to identify the operating parameters with the highest overall system efficiency which can be used to highlight the impact of changes in engine application on the car. These first of a kind tests were performed on a state-of-the-art gasoline engine equipped with a prototype Rankine-system.
X