Refine Your Search

Topic

Search Results

Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Metallurgical Approach for Improving Life and Brinell Resistance in Wheel Hub Units

2017-09-17
Abstract Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center).
Journal Article

Response of Austempering Heat Treatment on Microstructure and Mechanical Property in Different Zones of As-Welded Ductile Iron (DI)

2018-05-08
Abstract Sound ductile iron (DI) welded joints were performed using developed coated electrode and optimized welding parameters including post weld heat treatment (PWHT).Weldments consisting of weld metal, partially melted zone (PMZ), heat affected zone (HAZ) and base metal were austenitized at 900 °C for 2 hour and austempered at 300 °C and 350 °C for three different holding time (1.5 hour, 2 hour and 2.5 hour). In as-weld condition, microstructures of weld metal and PMZ show ledeburitic carbide and alloyed pearlite, but differ with their amount. Whereas microstructure of HAZ shows pearlite with some ledeburitic carbide and base metal shows only ferrite.
Journal Article

The Effect of Equal-Channel Angular Pressing Processing on Microstructural Evolution, Hardness Homogeneity, and Mechanical Properties of Pure Aluminum

2020-07-25
Abstract Equal-channel angular pressing (ECAP) is among the most applicable severe plastic deformation processes used to fabricate ultrafine-grained materials with superior mechanical properties. In this work, a commercial purity aluminum has been processed via ECAP process up to four passes. The influence of ECAP routes (A and Bc) on the mechanical properties of the material and its grain size was investigated. Microstructural observations of the as-annealed and the rods processed via ECAP were undertaken using optical microscopy. Hardness profiles and contour maps of sections cut perpendicularly and parallel to the load direction were assessed to investigate the effect of ECAP processing on the hardness distribution across the deformed rods. Compressive properties of the rods were also examined. In addition, digital images correlation was used to display the stress distribution along the longitudinal section of the processed sample during the compression test.
Journal Article

Repairing Volume Defects of Al-Cu Alloy Joints by Active-Passive Filling Friction Stir Repairing

2020-11-12
Abstract In this study, active-passive filling friction stir repairing (A-PFFSR) process was employed to repair the volume defects in friction stir welding (FSW) joints of Al-Cu alloy. The volume defects with varied geometries were first machined into taper holes, which are similar to keyhole defect by a rotational tool with a threaded pin. Then, the keyhole defect was effectively filled with the materials around the keyhole and an additional filler using a number of nonconsumable pinless tools with the shoulders having six spiral flutes. The macro/microstructures, microhardness, and tensile properties of the repaired joints were investigated. The influences of plunge speed on macro/microstructures and mechanical properties of the repaired joints have been analyzed too. It was noticed that decreasing plunge speed was effective to improve the frictional heat and material flow, which increased joint surface integrity avoiding interfacial drawbacks.
Journal Article

Optimization and Reliability Analysis Aiming to Minimize Surface Roughness of Selective Inhibition Sintered Parts

2020-10-12
Abstract Selective inhibition sintering (SIS) results in easy, flexible, fast, and cost-efficient fabrication of functional parts by using powder material for various applications. The functional part is important for operational examination by fabricating the part unswervingly from computer-aided design (CAD) data. However, poor surface quality is the major disadvantage in the SIS procedure. The selection procedure of optimal operating parameters plays a major role in the fabrication of end products. The present study discusses the effect of key contributing operating parameters on the surface quality of the polyamide parts fabricated by the SIS process. Parameters like heater power (HP), layer thickness (LT), heater feed rate (HFR), machine feed rate (MFR), and bed temperature (BT) were considered in this study.
Journal Article

Effect of Ball Milling on the Tensile Properties of Aluminum-Based Metal Matrix Nanocomposite Developed by Stir Casting Technique

2021-06-16
Abstract Combining ball milling with stir casting in the synthesis of nanocomposites is found effective in increasing the strength and ductility of the nanocomposites. In the first step, the nanoparticles used as reinforcement are generated by milling a mixture of aluminum (Al) and manganese dioxide (MnO2) powders. A mixture of Al and MnO2 powders are mixed in the ratio of 1:2.4 by weight and milled at 300 rpm in a high-energy planetary ball mill for different durations of 120 min, 240 min, and 360 min to generate nano-sized alumina (Al2O3) particles. It is supposed that the powders have two different roles during milling, firstly, to generate nano-sized Al2O3 by oxidation at the high-energy impact points due to collision between Al and MnO2 particles, and secondly, to keep nano-sized Al2O3 particles physically separate by the presence of coarser particles.
Journal Article

Damping of Powder Metal Rings

2020-05-21
Abstract Powder metallurgy is a widely used manufacturing methodology in the gearbox industry. Noise and vibration is a common cause for concern in the gearbox industry due to the continuous contact between gear teeth at high rotational frequencies. Despite this, limited research has been performed investigating the modal properties of powder metal products. This work investigates the damping ratios of a copper-infiltrated steel powder metal ring and a hot-rolled steel ring both experimentally and computationally. Negligible difference was observed between the damping ratios of the powder metal and hot-rolled steel rings. Two proportional damping models were investigated to predict the damping ratios of the powder metal ring. It was found that the Caughey damping model was the most accurate, generating damping ratios within 2.36% for a frequency bandwidth of up to 4000 Hz.
Journal Article

Processing of Aluminium/Boron Carbide Composites and Functionally Graded Materials: A Literature Review

2021-11-03
Abstract Aluminum boron carbide (Al-B4C) composites have been a popular choice among scientists and designers for high-performance strength-to-weight ratio engineering applications. Requirements for such applications are met due to enhanced microstructure, mechanical properties, and ease of processing conditions. The performance and application of these composites are mostly dependent on certain parameters, like composition ratios of reinforcing particles, their sizes and wettability, the presence of additional phases, etc. Prominently, efforts are also being made to synthesize Al-B4C as functionally graded materials (FGMs) that have the potential to cater to the needs of advanced engineering applications and can facilitate new dimensions in the field of aluminum matrix composites (AMCs).
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

Effect of Shot Peening Conditions on the Fatigue Life of Additively Manufactured A357.0 Parts

2020-01-09
Abstract Fatigue performance can be a critical attribute for the production of structural parts or components via additive manufacturing (AM). In comparison to the static tensile behavior of AM components, there is a lack of knowledge regarding the fatigue performance. The growing market demand for AM implies the need for more accurate fatigue investigations to account for dynamically loaded applications. A357.0 parts are processed by laser-based powder bed fusion (L-PBF) in order to evaluate the effect of surface finishing on fatigue behavior. The specimens are surface finished by shot peening using ϕ = 0.2 and ϕ = 0.4 mm steel particles and ϕ = 0.21-0.3 mm zirconia-based ceramic particles.
Journal Article

Development of a Thin-Wall Magnesium Automotive Door Inner Panel

2020-08-11
Abstract Cast magnesium (Mg) door inner panels can provide a good combination of weight, functional, manufacturing, and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility, and relatively low strength versus steel. A project was supported by the US Department of Energy to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, Mg inner panel. This development project is the first of its kind within North America. The 2.0 mm Mg design, through casting process enablers, has met or exceeded all stiffness and side-impact requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies. The performance of the Mg design has been demonstrated through component and vehicle tests.
Journal Article

Effects of Heat Treatment on Exfoliation Corrosion, Intergranular Corrosion, Stress Corrosion Cracking, and Joining Corrosion of AA7075 with Advanced Aging and T6

2020-07-21
Abstract AA7075 is susceptible to localized corrosion like exfoliation corrosion (EXCO), intergranular corrosion (IGC), and stress corrosion cracking (SCC). Its susceptibility is strongly affected by heat treatments. In this study, the effects of two heat treatments applied to AA7075 alloy at a different time and temperature on EXCO, IGC, and SCC were investigated. Furthermore, a joining corrosion evaluation using self-piercing riveting (SPR) was conducted. It was concluded that, when compared to the traditional T6 aging process, the samples subjected to a novel advanced aging process with a significantly reduced aging time were comparable with respect to the resistance to EXCO, IGC, SCC, and SPR joining corrosion.
Journal Article

Evaluation of Weldability and Mechanical Properties in Resistance Spot Welding of Ultrahigh-Strength TRIP1100 Steel

2018-12-14
Abstract To use steel in the automotive industry, it is essential to characterize its weldability and weldable current range. The resistance spot welding of ultrahigh-strength transformation-induced plasticity steel (TRIP1100 steel), which is a candidate for application in an autobody, is studied here. Identifying the weld lobe and the best welding parameters and studying the microstructure and mechanical properties of the spot welds of TRIP steel were done using metallurgical techniques, tensile-shear and cross-tension tests, and fractography and microhardness testing. A partial fracture analysis (stepwise tensile test) showed a crack initiated at the tip of the notch. The best range for welding current was found to be 10-12 kA. The diameter of the weld nugget increased up to 5√t; however, it was found that at least 15% increase in the diameter of the weld nugget can result in a more favorable failure. The ductility ratio was found to be less than 0.5 for ultrahigh-strength steel.
Journal Article

Low Cycle Fatigue and Ratcheting Behavior of SA333 Gr-6 Steel at 300°C Temperature

2019-01-23
Abstract The objective of this investigation is to study the cyclic deformation behavior of SA333 Gr-6 C-Mn steel at 300°C. Low cycle fatigue tests were carried out at total strain amplitude between ±0.35 and ±1.25% at a constant strain rate of 1 × 10−3 s−1. Ratcheting tests were conducted at a various combination of mean stress and stress amplitude at a constant stress rate of 115 MPa s−1. The material SA333 Gr-6 steel exhibits cyclic hardening throughout its fatigue life. The material shows non-Masing behavior and deviation (δσo ) from Masing behavior increase with an increase of strain amplitude. Ratcheting strain accumulation increases, whereas ratcheting life decreases with an increase in mean stress or stress amplitude. With an increase in mean stress and stress amplitude, ratcheting rate also increases. The material shows hardening characteristic due to dynamic strain aging (DSA) phenomena.
Journal Article

Characterization of Friction Stir Processed Aluminum-Graphene Nanoplatelets Composites

2020-01-23
Abstract The present study deals with the investigation on microstructural and mechanical properties of friction stir processed (FSPed) pure Aluminum (Al)-Graphene Nanoplatelets (GNPs) composites. Composite specimens such as castings were made by blending 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, and 2.0 wt.% of GNPs in pure Al matrix using the ultrasonic-assisted stir casting technique (UASCT). Also for enhancement of mechanical properties via grain refinement the friction stir processing (FSP) has been employed, as well as mechanical properties like tensile strength and microhardness were evaluated. Moreover, the microstructural analysis were done using Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), transmission electron microscopy (TEM), and X-Ray Diffraction (XRD) examination were also performed for inspecting the changes occurred during synthesis of the fabricated composites after FSP.
Journal Article

A Novel Durability Analysis Approach for High-Pressure Die Cast Aluminum Engine Block

2021-03-03
Abstract Lightweight and high-strength high-pressure die casting (HPDC) aluminum has been widely used in automotive components such as the cylinder block, lower crankcase extension, transmission case, and drive unit. Die cast parts have good surface finishes with relatively higher material strength in the casting skin than the center core material, maintain consistent features and tolerance, and maximize metal yield, therefore making it the most cost-effective casting process for mass production of aluminum parts. However, due to the rapid filling rates, the HPDC process tends to form large porosity and oxides because of the entrapped gas and solidification shrinkage, thereby deteriorating the mechanical properties of the casting parts.
Journal Article

A Comparative Analysis of Metaheuristic Approaches (Genetic Algorithm/Hybridization of Genetic Algorithms and Simulated Annealing) for Planning and Scheduling Problem with Energy Aspect

2021-05-20
Abstract This article discusses a multi-item planning and scheduling problem in a job-shop system with consideration of energy consumption. Planning is considered by a set of periods, each one is characterized by a demand, energy, and length. Scheduling is determined by the sequences of jobs on available resources. A Mixed-Integer Linear Programming (MILP) problem is formulated to integrate planning and scheduling, it is considered as an NP-difficult problem. A Genetic Algorithm (GA) is then developed to solve the MILP, and then a hybridized approach of simulated annealing with genetic algorithm (HGASA) is presented to optimize the results. Finally, numerical results are presented and analyzed to evaluate the effectiveness of the proposed algorithms.
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Journal Article

Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium-Carbon Steel Drawn Wire

2023-09-29
Abstract In this article, the effect of heat treatment on the microstructure and mechanical behavior of medium-carbon steel wire intended for the spring mattress is investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction, Vickers hardness (Hv), and tensile strength. The results indicate that the microstructure elongation along the wire axis is observed with the bending and kinking lamellae at the deformation level of 57.81%, this change appears as a fracture in the microstructure and leads to an increase in hardness, tensile strength, and intensities of diffraction patterns. After heat treatment, we observed a redistribution in the grain, which is almost the same in the wire rod and drawn wires; indeed, this led to a decrease in hardness, tensile strength, and augmentation in intensities of peaks. The EBSD pole figures reveal the development of texture in the cementite slip plane (001).
X