Refine Your Search

Topic

Search Results

Journal Article

Impact of Dynamic Characteristics of Wheel-Rail Coupling on Rail Corrugation

2019-07-02
Abstract To gain a better understanding of the characteristics of corrugation, including the development and propagation of corrugation, and impact of vehicle and track dynamics, a computational model was established, taking into account the nonlinearity of vehicle-track coupling. The model assumes a fixed train speed of 300 km/h and accounts for vertical interaction force components and rail wear effect. Site measurements were used to validate the numerical model. Computational results show that (1) Wheel polygonalisation corresponding to excitation frequency of 545-572 Hz was mainly attributed to track irregularity and uneven stiffness of under-rail supports, which in turn leads to vibration modes of the bogie and axle system in the frequency range of 500-600 Hz, aggregating wheel wear. (2) The peak response frequency of rail of the non-ballasted track coincides with the excitation frequency of wheel-rail coupling; the resonance results in larger wear amplitude of the rail.
Journal Article

Development of a New Neutral Coasting Control Utilizing ADAS and GPS

2019-01-23
Abstract It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than deceleration fuel cutoff (DFCO)-which exists in all current vehicle powertrain controllers-can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Journal Article

A Review of Sensor Technologies for Automotive Fuel Economy Benefits

2018-12-11
Abstract This article is a review of automobile sensor technologies that have the potential to enhance fuel economy. Based on an in-depth review of the literature and demonstration projects, the following sensor technologies were selected for evaluation: vehicular radar systems (VRS), camera systems (CS), and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. V2V and V2I systems were found to have the highest merit in improving fuel economy over a wide range of integration strategies, with fuel economy improvements ranging from 5 to 20% with V2V and 10 to 25% for V2I. However, V2V and V2I systems require significant adoption for practical application which is not expected in this decade. Numerous academic studies and contemporary vehicular safety systems attest VRS as more technologically mature and robust relative to other sensors. However, VRS offers less fuel economy enhancement (~14%).
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Improving the Modelling of Dissociating Hydrogen Nozzles

2019-11-21
Abstract While the design of nozzles for diatomic gases is very well established and covered by published works, the case of a diatomic gas dissociating to monatomic along a nozzle is a novel subject that needs a proper mathematical description. These novel studies are relevant to the definition of nozzles for gas-core Nuclear Thermal Rockets (NTR) that are receiving increased attention for the potential advantages they may deliver versus current generation rockets. The article thus reviews the design of the nozzles of gas-core NTR that use hydrogen as the propellant. Propellant temperatures are expected to reach 9,000-15,000 K. Above 1500 K, hydrogen begins to dissociate at low pressures, and around 3000 K dissociation also occurs at high pressures. At a given temperature, the lower the gas pressure the more molecules dissociate, and H2 → H + H. The properties of the gas are a function of the mass fractions of diatomic and monatomic hydrogen x H2 and x H = 1 − x H2.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

An Approach for Heavy-Duty Vehicle-Level Engine Brake Performance Evaluation

2019-01-08
Abstract An innovative analysis approach to evaluate heavy-duty vehicle downhill engine brake performance was developed. The vehicle model developed with GT-Drive simulates vehicle downhill control speeds with different engine brake retarding powers, transmission gears, and vehicle weights at sea level or high altitude. The outputs are then used to construct multi-factor parametric design charts. The charts can be used to analyze the vehicle-level engine brake capabilities or compare braking performance difference between different engine brake configurations to quantify the risk of engine retarding power deficiency at both sea level and high altitude downhill driving conditions.
Journal Article

Onboard Natural Gas Reforming for Heavy Duty Vehicles

2019-01-07
Abstract Powertrain simulations and catalyst studies showed the efficiency credits and feasibility of onboard reforming as a way to recover waste heat from heavy duty vehicles (HDVs) fueled by natural gas (NG). Onboard reforming involves 1) injecting NG into the exhaust gas recycle (EGR) loop of the HDV, 2) reforming NG on a catalyst in the EGR loop to hydrogen and carbon monoxide, and 3) combusting the reformed fuel in the engine. The reformed fuel has increased heating value (4-10% higher LHV) and flame speed over NG, allowing stable flames in spark ignition (SI) engines at EGR levels up to 25-30%. A sulfur-tolerant reforming catalyst was shown to reform a significant amount of NG (15-30% conversion) using amounts of precious metal near the current practice for HDV emissions control (10 g rhodium). Engine simulations showed that the high EGR levels enabled by onboard reforming are used most effectively to control engine load instead of waste-gating or throttling.
Journal Article

Electrifying Long-Haul Freight—Part I: Review of Drag, Rolling Resistance, and Weight Reduction Potential

2019-09-05
Abstract Electric heavy-duty tractor-trailers (EHDTT) offer an important option to reduce greenhouse gases (GHG) for the transportation sector. However, to increase the range of the EHDTT, this effort investigates critical vehicle design features that demonstrate a gain in overall freight efficiency of the vehicle. Specifically, factors affecting aerodynamics, rolling resistance, and gross vehicle weight are essential to arrive at practical input parameters for a comprehensive numerical model of the EHDTT, developed by the authors in a subsequent paper. For example, drag reduction devices like skirts, deturbulators, vortex generators, covers, and other commercially available apparatuses result in an aggregated coefficient of drag of 0.367. Furthermore, a mixed utilization of single-wide tires and dual tires allows for an optimized trade-off between low rolling resistance tires, traction, and durability.
Journal Article

Empirical Investigation on the Effects of Rolling Resistance and Weight on Fuel Economy of Medium-Duty Trucks

2019-08-28
Abstract Vehicle rolling resistance and weight are two of the factors that affect fuel economy. The vehicle tire rolling resistance has a more significant influence than aerodynamics drags on fuel economy at lower vehicle speeds, particularly true for medium- and heavy-duty trucks. Less vehicle weight reduces inertia loads, uphill grade resistance, and rolling resistance. The influence of weight on the fuel economy can be considerable particularly in light- to medium-duty truck classes because the weight makes up a larger portion of gross vehicle weight. This article presents an empirical investigation and a numerical analysis of the influences of rolling resistance and weight on the fuel economy of medium-duty trucks. The experimental tests include various tires and payloads applied on a total of 21vehicle configurations over three road profiles. These tests are used to assess the sensitivity of rolling resistance and weight to the vehicle fuel economy.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
Journal Article

The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine

2019-01-23
Abstract The article describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components’ light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features has been thoroughly experimentally examined.
Journal Article

A Study of Low Temperature Plasma-Assisted Gasoline HCCI Combustion

2019-01-29
Abstract In this study low temperature plasma technology was applied to expand auto-ignition operation region and control auto-ignition phasing of the homogeneous charge compression ignition (HCCI) combustion. The low temperature plasma igniter of a barrier discharge model (barrier discharge igniter (BDI)) with high-frequency voltage (15 kHz) was provided at the top center of the combustion chamber, and the auto-ignition characteristics of the HCCI combustion by the low temperature plasma assistance was investigated by using a single-cylinder gasoline engine. HCCI combustion with compression ratio of 15:1 was achieved by increasing the intake air temperature. The lean air-fuel (A/F) ratio limit and visualized auto-ignition combustion process on baseline HCCI without discharge assistance, spark-assisted HCCI, and BDI-assisted HCCI were compared.
Journal Article

Homogeneous Charge Reactivity-Controlled Compression Ignition Strategy to Reduce Regulated Pollutants from Diesel Engines

2019-03-14
Abstract Reactivity-controlled compression ignition (RCCI) is a dual fuel low temperature combustion (LTC) strategy which results in a wider operating load range, near-zero oxides of nitrogen (NOx) and particulate matter (PM) emissions, and higher thermal efficiency. One of the major shortcomings in RCCI is a higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. Unlike conventional combustion, aftertreatment control of HC and CO emissions is difficult to achieve in RCCI owing to lower exhaust gas temperatures. In conventional RCCI, an early direct injection (DI) of low volatile diesel fuel into the premixed gasoline-air mixture in the combustion chamber results in charge stratification and fuel spray wall wetting leading to higher HC and CO emissions. To address this limitation, a homogeneous charge reactivity-controlled compression ignition (HCRCCI) strategy is proposed in the present work, wherein the DI of diesel fuel is eliminated.
Journal Article

Reduction of Cyclic Variations by Using Advanced Ignition Systems in a Lean-Burn Stationary Natural Gas Engine Operating at 10 Bar BMEP and 1800 rpm

2018-12-14
Abstract In stationary natural gas engines, lean-burn combustion offers higher engine efficiencies with simultaneous compliance with emission regulations. A prominent problem that one encounters with lean operation is cyclic variations. Advanced ignition systems offer a potential solution as they suppress cyclic variations in addition to extending the lean ignition limit. In this article, the performance of three ignition systems-conventional spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI)-in a single-cylinder natural gas engine is presented. First, a thorough discussion regarding the efficacy of several metrics, in addition to coefficient of variation of indicated mean effective pressure (COV_IMEP), in representing combustion instability is presented. This is followed by a discussion about the performance of the three ignition systems at a single operational condition, that is, same excess air ratio (λ) and ignition timing (IT).
Journal Article

Experimental Studies on Liquid Phase LPG Direct Injection on a Two-Stroke SI Engine

2019-05-31
Abstract Directly injecting fuel in two-stroke spark-ignition (2S-SI) engines will significantly reduce fuel short-circuiting losses. The liquid phase liquefied petroleum gas (LPG) DI (LLDI) mode has not been studied on 2S-SI engines even though this fuel is widely used for transportation. In this experimental work a 2S-SI gasoline-powered engine used on three-wheelers was modified to operate in LLDI mode with an electronic engine controller. The influences of injection pressure (IP), end of injection (EOI) timing, location of the spark plug, and type of injector on performance, combustion, and emissions were studied at different operating conditions. EOI close to bottom dead center with the spark plug located near the exhaust port was the most suitable for the LLDI mode which significantly enhanced the fuel trapping efficiency and improved the thermal efficiency.
Journal Article

Experimental Studies of the Effect of Ethanol Auxiliary Fueled Turbulent Jet Ignition in an Optical Engine

2019-07-26
Abstract Internal combustion (IC) engines are widely used in automotive, marine, agricultural and industrial machineries because of their superior performance, high efficiency, power density, durability and versatility in size and power outputs. In response to the demand for improved engine efficiency and lower CO2 emissions, advanced combustion process control techniques and more renewable fuels should be adopted for IC engines. Lean-burn combustion is one of the technologies with the potential to improve thermal efficiencies due to reduced heat loss and higher ratio of the specific heats. In order to operate the IC engines with very lean air/fuel mixtures, multiple turbulent jet pre-chamber ignition has been researched and developed to extend the lean-burn limit. Turbulent Jet Ignition (TJI) offers very fast burn rates compared to spark plug ignition by producing multiple ignition sites that consume the main charge rapidly.
Journal Article

Modelling and Numerical Simulation of Dual Fuel Lean Flames Using Local Burning Velocity and Critical Chemical Timescale

2019-07-02
Abstract Addition of hydrogen to hydrocarbons in premixed turbulent combustion is of technological interest due to their increased reactivity, flame stability and extended lean extinction limits. However, such flames are a challenge to reaction modelling, especially as the strong preferential diffusion effects modify the physical processes, which are of importance even for highly turbulent high-pressure conditions. In the present work, Reynolds-averaged Navier-Stokes (RANS) modelling is carried out to investigate pressure and hydrogen content on methane/hydrogen/air flames.
Journal Article

Throat Unit Collector Modeling of Gasoline Particulate Filter Performance

2019-07-26
Abstract The wide application of Gasoline Direct Injection (GDI) engines and the increasingly stringent Particulate Matter (PM) and Particulate Number (PN) regulations make Gasoline Particulate Filters (GPFs) with high filtration efficiency and low pressure drop highly desirable. However, due to the specifics of GDI operation and GDI PM, the design of these filters is even more challenging as compared to their diesel counterparts. Computational Fluid Dynamics (CFD) studies have been shown to be an effective way to investigate filter performance. In particular, our previous two-dimensional (2D) CFD study explicated the pore size and pore-size distribution effects on GPF filtration efficiency and pressure drop. The “throat unit collector” model developed in this study furthers this work in order to characterize the GPF wall microstructure more precisely.
X