Refine Your Search

Topic

Search Results

Viewing 1 to 7 of 7
Journal Article

Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions

2018-05-22
Abstract The effects of exhaust emissions on public welfare have prompted the US Environmental Protection Agency to take various actions toward understanding, modeling, and reducing air pollution from vehicles. This study was performed to better understand exhaust emissions of heavy-duty diesel-powered tractor-trailer trucks that operate in drayage service, which involves the moving of shipping containers to or from port terminals. The study involved the use of portable emissions measurement systems (PEMS) to measure both gaseous and particulate matter (PM) mass emission rates and record various vehicle and engine parameters from the test trucks as they performed their normal drayage service. These measurements were supplemented with port terminal gate entry/exit logs for all drayage trucks entering the two Port of Houston Authority container terminals.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

Highly Efficient Robust Optimization Design Method for Improving Automotive Acoustic Package Performance

2020-08-25
Abstract To consider the influence of uncertainty in the design process of automotive acoustic packages, the robustness of the acoustic packaging system performance must be improved, and the low-efficiency problem of the two-layer nesting robustness optimization model must be solved. This article proposes a highly efficient robustness optimization design method for improving the performance of the automotive acoustic package. First, the full vehicle model was established based on the statistical energy analysis method, and the accuracy of the model was verified through acoustic transmission function (ATF) testing. The parameters affecting the sound absorption and insulation performance of the key acoustic packaging parts were selected as the uncertain parameters, and their sensitivity was analyzed.
Journal Article

Integration Model for Demand-Driven Material Requirement Planning and Industry 4.0

2022-08-09
Abstract Demand-Driven Material Requirements Planning (DDMRP) is regarded as a potential method of material management to provide planning and execution performance improvements in variable environments. However, Industry 4.0 refers to the fourth industrial revolution that allows creating a smart manufacturing system by using the new technologies of communication, automation, and digitalization. DDMRP and Industry 4.0 are crucial as new technologies are introduced to companies to improve their performance. Nevertheless, there is an absence of reviews showing the relationships between DDMRP and Industry 4.0. A literature review is used to identify the key constructs of DDMRP and Industry 4.0, and the relationships postulated between them are presented. The main objective of this study is to investigate the relationship between DDMRP and Industry 4.0. The result of this article was a model for integrating the DDMPRP and Industry 4.0 proposed upon a robust theoretical method.
Journal Article

Simulated Drag Study of Fuel Tank Configurations for Liquid Hydrogen-Powered Commercial Aircraft

2020-12-09
Abstract The airline industry faces a crisis in the future as consumer demand is increasing, but the environmental effects and depleting resources of kerosene mean that growth is unsustainable. Hydrogen is touted as the leading candidate to replace kerosene, but it needs significant technological and economical endeavors. In such a scenario, cryogenic liquid hydrogen (LH2) is predicted to be the most feasible method of using hydrogen. The major challenge of LH2 as an aircraft fuel is that it requires approximately four times the storage volume of kerosene—due to its lower density. Thus the design of cryogenic storage tanks to handle larger quantities of fuel is becoming increasingly important. But the increase in drag associated with larger storage tanks causes an increase in fuel consumption. Hence, this paper aims to evaluate the aerodynamic performance of different storage configurations and aid in the selection of an economic and efficient storage system.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
X