Refine Your Search

Topic

Search Results

Journal Article

Utilization of Man Power, Increment in Productivity by Using Lean Management in Kitting Area of Engine Manufacturing Facility - A Case Study

2018-08-08
Abstract The project of lean management is implemented in General Motors India Private Limited, Pune, India plant. The aim of the project is to improve manpower utilization by removing seven types of wastes using lean management system in kitting process. Lean manufacturing or management is the soul of Just-In-Time philosophy and is not new in Automobile manufacture sector where it born. Kitting area is analogs to the modern supermarket where required components, parts, consumables, subassemblies are kept in bins. These bins are placed in racks so that choosing right part at right time can be achieved easily. Video recording, in-person observation, feedback from online operators and other departments such as maintenance, control, supply chain etc. are taken. It is observed that the work content performed by current strength of operators can be performed by less number of operators. After executing this project, it was possible to reduce one operator and increase manpower utilization.
Journal Article

Study of Wedge-Actuated Continuously Variable Transmission

2021-08-23
Abstract The mechanical efficiency of the current continuously variable transmission (CVT) suffers from high pump loss induced by a high-pressure system. A novel wedge mechanism is designed into the CVT clamp actuation system to generate the majority of clamp force mechanically. Therefore, the hydraulic system can operate at a low-pressure level most of the time, and the pump loss is greatly reduced to improve the CVT’s mechanical efficiency. Through dynamic analysis and design optimization, 90% of clamp force is contributed by the wedge mechanism and the rest of the 10% is generated by a conventional hydraulic system. The optimal design is validated through dynamic modeling using Siemens Virtual.Lab software by simulating the wedge clamp force generation, ratio change dynamics, and system response under tip-in conditions. After that, we built prototype components that target 70% of the clamp force contributed by the wedge mechanism and tested them on a transmission dynamometer.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Improving the Modelling of Dissociating Hydrogen Nozzles

2019-11-21
Abstract While the design of nozzles for diatomic gases is very well established and covered by published works, the case of a diatomic gas dissociating to monatomic along a nozzle is a novel subject that needs a proper mathematical description. These novel studies are relevant to the definition of nozzles for gas-core Nuclear Thermal Rockets (NTR) that are receiving increased attention for the potential advantages they may deliver versus current generation rockets. The article thus reviews the design of the nozzles of gas-core NTR that use hydrogen as the propellant. Propellant temperatures are expected to reach 9,000-15,000 K. Above 1500 K, hydrogen begins to dissociate at low pressures, and around 3000 K dissociation also occurs at high pressures. At a given temperature, the lower the gas pressure the more molecules dissociate, and H2 → H + H. The properties of the gas are a function of the mass fractions of diatomic and monatomic hydrogen x H2 and x H = 1 − x H2.
Journal Article

Analytical Estimation of Infrared Signature of Converging and Converging-Diverging Nozzles of Jet Engine

2021-04-21
Abstract Jet engine hot parts (e.g., jet nozzle) are a crucial source of aircraft’s infrared (IR) signature from the rearview, in 1.9-2.9 μm and 3-5 μm bands. The exhaust nozzle design used in a jet aircraft affects its performance and IR signature (which is also affected just by performance) from the engine layout. For supersonic aircraft (typically for M ∞ > 1.5), a converging-diverging (C-D) nozzle is preferred over a convergent nozzle for optimum performance. The diverging section of the C-D nozzle has a full range of visibility from the rearview; hence, it was not considered a prudent choice for low IR observability. This theoretical study compares the IR signature of the C-D nozzle with that of the convergent nozzle from the rearview in 1.9-2.9 μm and 3-5 μm bands for the same thrust.
Journal Article

Critical Inlet Pressure Prediction for Inline Piston Pumps Using Multiphase Computational Fluid Dynamics Modelling

2021-02-15
Abstract Inline piston pumps are extensively used in aircraft hydraulic systems. They can be found in engine-driven large-sized hydraulic pumps and zonal electric motor-driven mid-small sized pumps. Inline piston pumps are positive displacement pumps with variable volumetric flow controls. Positive displacement pumps can provide a variable flow rate over a wide range of suction pressures. Aircraft fly at high altitudes, and therefore these pumps have to work in extreme conditions such as low atmospheric pressure, low temperature. At low inlet pressures, the pump is highly susceptible to cavitation, i.e., insufficient filling capacity. The pressure below which pump flow rate drops drastically is known as critical inlet pressure. Extensive research has been carried out to study cavitation in inline piston pumps.
Journal Article

Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions

2018-05-22
Abstract The effects of exhaust emissions on public welfare have prompted the US Environmental Protection Agency to take various actions toward understanding, modeling, and reducing air pollution from vehicles. This study was performed to better understand exhaust emissions of heavy-duty diesel-powered tractor-trailer trucks that operate in drayage service, which involves the moving of shipping containers to or from port terminals. The study involved the use of portable emissions measurement systems (PEMS) to measure both gaseous and particulate matter (PM) mass emission rates and record various vehicle and engine parameters from the test trucks as they performed their normal drayage service. These measurements were supplemented with port terminal gate entry/exit logs for all drayage trucks entering the two Port of Houston Authority container terminals.
Journal Article

A Technique of Estimating Particulate Matter Emission in Non-Road Engine Transient Cycle

2020-02-07
Abstract Particulates are a major source of emission from diesel engine. They consist of particles of carbon, sulfates, oil, fuel, and water. These constituents are measured by filtering a sample diluted in a partial- or full-flow tunnel and weighing them. It is a general trend for measuring particulate matter (PM) on cycle basis. But 1-D simulation needs complete PM 3-D contour map considering all engine operating region. It is very tedious work for generating PM on each steady-state point on engine test bed. Hence, Filter smoke meter or opacimeter measurements can be used for estimating PM. Filter smoke meters measured the light reflected from a filter paper through which a known volume of exhaust gas was passed. Opacity meters measure light absorbed by a standard column of exhaust. Both equipments measure visible black smoke comparatively at lower expenditure cost. They are designed to control measurement noise, resolution and repeatability with acceptable accuracy level.
Journal Article

Metallurgical Approach for Improving Life and Brinell Resistance in Wheel Hub Units

2017-09-17
Abstract Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center).
Journal Article

Design and Analysis of a Formula SAE Vehicle Chain Sprocket under Static and Fatigue Loading Conditions

2021-04-13
Abstract In this study, an attempt is made to deduce the number of teeth in the driven sprocket of a Formula SAE (FSAE) car using Optimum Lap software based on track run simulation of the car, which comes out to be 51 teeth. The sprocket material was selected as Aluminum Alloy AL-7075 T6 because of its strength-to-weight ratio. In addition to it, the generative design strategy by Fusion-360 was utilized to automatically engender the slotted sprocket design on the ground of stress induced on it during operation. Furthermore, the design was verified virtually carrying out static structural and fatigue analysis under the worst-case scenario in CAE software. The overall weight reduction achieved was around 45%. Furthermore, the center-to-center distance between the sprockets and the number of chain links required were also calculated on the basis of space constraints and the wrap angle of the sprocket.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

2018-06-04
Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

Aging Effects of Catalytic Converters in Diesel Exhaust Gas Systems and Their Influence on Real Driving NOx Emissions for Urban Buses

2018-06-18
Abstract The selective catalytic reduction (SCR) of nitrogen oxides seems to be the most promising technique to meet prospective emission regulations of diesel-driven commercial vehicles. In the case of developing cost-effective catalytic converters with comparably high activity, selectivity, and resistance against aging, ion-exchanged zeolites play a major role. This study presents, firstly, a brief literature review and subsequently a discussion of an extensive conversion analysis of exemplary Cu/ and Fe/zeolites, as well as a homogeneous admixture of both. The aging stages of SCR catalysts deserve particular attention in this study. In addition, the aging condition of the diesel oxidation catalyst (DOC) was analyzed, which influences the nitrogen dioxide (NO2) formation, because the NO2/nitrogen oxides (NOx) ratio upstream from the SCR converter could be identified as a key factor for low temperature NOx conversion.
Journal Article

Onboard Natural Gas Reforming for Heavy Duty Vehicles

2019-01-07
Abstract Powertrain simulations and catalyst studies showed the efficiency credits and feasibility of onboard reforming as a way to recover waste heat from heavy duty vehicles (HDVs) fueled by natural gas (NG). Onboard reforming involves 1) injecting NG into the exhaust gas recycle (EGR) loop of the HDV, 2) reforming NG on a catalyst in the EGR loop to hydrogen and carbon monoxide, and 3) combusting the reformed fuel in the engine. The reformed fuel has increased heating value (4-10% higher LHV) and flame speed over NG, allowing stable flames in spark ignition (SI) engines at EGR levels up to 25-30%. A sulfur-tolerant reforming catalyst was shown to reform a significant amount of NG (15-30% conversion) using amounts of precious metal near the current practice for HDV emissions control (10 g rhodium). Engine simulations showed that the high EGR levels enabled by onboard reforming are used most effectively to control engine load instead of waste-gating or throttling.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models

2018-05-07
Abstract Finite Element Analysis (FEA) of metal cutting is largely the domain of research organizations. Despite significant advances towards accurately modelling metal machining processes, industrial adoption of these advances has been limited. Academic studies, which mainly focused on orthogonal cutting, fail to address this discrepancy. This paper bridges the gap between simplistic orthogonal cutting models and the complex components typical in the manufacturing sector. This paper outlines how to utilize results from orthogonal cutting simulations to predict industrially relevant performance measures efficiently. In this approach, using 2D FEA cutting models a range of feed, speed and rake angles are simulated. Cutting force coefficients are then fit to the predicted cutting forces. Using these coefficients, forces for 3D cutting geometries are calculated.
Journal Article

Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams

2018-05-08
Abstract Due to the high deformability and energy dissipation capacity of polymer foams in compression, they are used in automotive applications to mitigate mechanical impacts. The mechanical response of the foams is strongly affected by their density. Phenomenological relations have been proposed to describe the effect of foam density on their stress-strain response in compression at a fixed loading rate and the effect of loading rate at a fixed foam density. In the present work, these empirical approaches are combined allowing for the dependence of loading rate effect in compression on foam density. The minimum experimental data set for calibration of the proposed model consists of compression test results at two different loading rates of foams with two different densities.
Journal Article

Increased Thread Load Capability of Bolted Joints in Light Weight Design

2017-06-29
Abstract Within the scope of today’s product development in automotive engineering, the aim is to produce lighter and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two ways: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
Journal Article

Classification of Contact Forces in Human-Robot Collaborative Manufacturing Environments

2018-04-02
Abstract This paper presents a machine learning application of the force/torque sensor in a human-robot collaborative manufacturing scenario. The purpose is to simplify the programming for physical interactions between the human operators and industrial robots in a hybrid manufacturing cell which combines several robotic applications, such as parts manipulation, assembly, sealing and painting, etc. A multiclass classifier using Light Gradient Boosting Machine (LightGBM) is first introduced in a robotic application for discriminating five different contact states w.r.t. the force/torque data. A systematic approach to train machine-learning based classifiers is presented, thus opens a door for enabling LightGBM with robotic data process. The total task time is reduced largely because force transitions can be detected on-the-fly. Experiments on an ABB force sensor and an industrial robot demonstrate the feasibility of the proposed method.
X