Refine Your Search

Topic

Search Results

Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

Real-Time Optimal Control of Power Management in a Fuel Cell Hybrid Electric Vehicle: A Comparative Analysis

2018-03-08
Abstract Power split in Fuel Cell Hybrid Electric Vehicles (FCHEVs) has been controlled using different strategies ranging from rule-based to optimal control. Dynamic Programming (DP) and Model Predictive Control (MPC) are two common optimal control strategies used in optimization of the power split in FCHEVs with a trade-off between global optimality of the solution and online implementation of the controller. This is due to the fact that DP that offers the global optimal solution requires the pre-known knowledge of the driving condition for the whole drive cycle, which makes the real-time implementation of the strategy more challenging. In this paper, both control strategies are developed and tested on a FC/battery vehicle model, and the results are compared in terms of total energy consumption. In addition, the effects of the MPC prediction horizon length on the controller performance are studied.
Journal Article

On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses

2018-04-17
Abstract Making use of a specifically designed dynamical vehicle model, the authors here presented the results of an activity for the evaluation of energy consumption and CO2 emissions of buses for urban applications. Both conventional and innovative (series hybrid, and fully electric) vehicles were considered to obtain interesting comparative conclusions. The derived tool was used to simulate the dynamical behaviour of these vehicles on a number of kinematic profiles measured during real buses operation in different contexts, varying from really congested city centre routes to fast-lane operated services. It was so possible to evaluate the energetic performances of those buses on a Tank-to-Wheel (TTW) basis.
Journal Article

Modeling and Optimal Design of All-Wheel-Drive Hybrid Light Trucks

2019-06-06
Abstract Fuel economy and performance are both important in the design of hybrid pickup trucks. All-wheel drive is essential to ensure superior performance compared to two-wheel-drive designs. In this article, as a comprehensive extension work to the article published in ASME Dynamic Systems and Control Conference [1] on all-wheel-drive (AWD) hybrid truck, we investigate the modeling, design, and control problem of AWD hybrid vehicles and develop a methodology to identify optimal designs. This methodology 1) formulates an automated modeling process, 2) searches exhaustively through all possible AWD designs, and 3) employs a near-optimal energy management strategy, to obtain a family of designs with superior performance and fuel economy. A design case study for a hybrid Ford F-150 is conducted, to showcase this design process.
Journal Article

Comparative Study of Different Air Supply Systems for Automotive Fuel Cell Applications

2019-05-10
Abstract The dynamic and efficiency of automotive fuel cell drives is significantly influenced by air supply system. Different air compression architectures use electric compressor (EC), electric turbocharger (ETC), or a serial booster (SB) consisting of turbocharger and electric compressor. These three variants of air compression systems were modeled using a map approach and added to a 0D fuel cell air supply model. The characteristic maps of the turbomachinery were measured on the test bench under fuel cell conditions. Subsequently, the calculated isentropic efficiencies were corrected with respect to heat transfer phenomena occurring during the measurement. Moreover, a scaling method for the maps of the turbomachinery is explained. The initial simulation of the air compression systems with equal diameters for the turbomachinery showed no difference in the mechanical power demand.
Journal Article

Selection of Reference Flux Linkage for Direct Torque Control Based Induction Motor Drive in Electric Vehicle Applications

2019-04-08
Abstract The surge in economic activities, in the developing nations, has resulted in rapid expansion of urban centres. This expansion of cities has caused a rapid increase in vehicular traffic, which in turn has caused deterioration of air quality. To overcome the problem of unprecedented air pollution, the governments worldwide have framed policies for faster adoption of electric vehicles. One of the major challenges faced is the development of low- cost drive for these vehicles and keeping the imports to a minimum. As a result of this, the trend is to move away from the permanent magnet-based motor technology and to use induction motor-based drivetrain. For the induction motors to be successful in electric vehicle drivetrain application, it is important to have a robust speed control algorithm. This work aims at adapting a direct torque control technique for induction motor’s speed control.
Journal Article

Electric Vehicle with Multi-Speed Transmission: A Review on Performances and Complexities

2018-12-04
Abstract Electric vehicles (EVs) with multi-speed transmission offer improved performances compared to those with single speed transmission system in terms of top speed, fast acceleration, or gradeability along with driving range. In this study, relevant literature is extensively analyzed to explore the performances and associated complexities with multi-speed automatic manual/mechanical transmission (AMT) system in EVs. In EV powertrain, the only torque generator component is electric motor, which is not equally efficient throughout wider speed range. To the other end, vehicles need to run at different speeds in diverse driving conditions. The study shows that multi-speed transmission system enables efficient operation of electric motor by choosing an appropriate gear at different driving torque-speed demands and thus contributes to achieve desired vehicle performances at minimum energy consumption.
Journal Article

Development of a Catalytic Converter Cool-Down Model to Investigate Intermittent Engine Operation in HEVs

2018-10-29
Abstract Catalytic converters, a primary component in most automotive emissions control systems, do not function well until they are heated substantially above ambient temperature. As the primary energy for catalyst heating comes from engine exhaust gases, plug-in hybrid electric vehicles (PHEVs) that have the potential for short and infrequent use of their onboard engine may have limited energy available for catalytic converter heating. This article presents a comparison of multiple hybrid supervisory control strategies to determine the ability to avoid engine cold starts during a blended charge-depleting propulsion mode. Full vehicle and catalytic converter simulations are performed in parallel with engine dynamometer testing in order to examine catalyst temperature variations during the course of the US06 City drive cycle. Emissions and energy consumption (E&EC) calculations are also performed to determine the effective number of engine starts during the drive cycle.
Journal Article

Multi-Attribute, System-Level Design Process for Automotive Powertrain Electric Drives: An Integrated Approach

2018-06-05
Abstract This article presents an electric drive powertrain design and virtual integration methodology in the context of electric vehicle systems. In the first stage, using the Model-Based System Engineering paradigm, the electric vehicle performance requirements are translated into electric drive target specifications using a system-level vehicle model. Subsequently, a functional electric drive subsystem-level model is developed based on magnetic co-energy and iron losses data obtained from a reference electric machine design. The functional electric drive model is scaled in order to meet the requested specifications, and it is coupled with different 1D (i.e. lumped-parameter) multi-physics sub-models that are later integrated into the electric vehicle system-level model. At the electric drive level the torque ripple and Noise, Vibration and Harshness characteristics are analyzed.
Journal Article

Investigation on Underhood Thermal Analysis of Truck Platooning

2018-03-22
Abstract This paper presents a combined aero-thermal computational fluid dynamic (CFD) evaluation of platooning medium duty commercial vehicles in two highway configurations. Thermal analysis comparison is made between an approach that includes vehicle drag reduction on engine heat rejection and one that does not by assuming a constant heat rejection based on open road conditions. The paper concludes that accounting for aerodynamic drag reduction on engine heat load provides a more real world evaluation than assuming a constant heat load based on open road conditions. A 3D CFD underhood thermal simulations are performed in two different vehicle platooning configurations; (i) single-lane and (ii) two-lane traffic conditions. The vehicle platooning consists of two identical vehicles, i.e. leading and trailing vehicle. In this work, heat exchangers are modeled by two different heat rejection rate models.
Journal Article

Aerodynamic Analysis of Cooling Airflow for Different Front-End Designs of a Heavy-Duty Cab-Over-Engine Truck

2018-04-07
Abstract Improving the aerodynamics of heavy trucks is an important consideration in the strive for more energy-efficient vehicles. Cooling drag is one part of the total aerodynamic resistance acting on a vehicle, which arises as a consequence of air flowing through the grille area, the heat exchangers, and the irregular under-hood area. Today cooling packages of heavy trucks are dimensioned for a critical cooling case, typically when the vehicle is driving fully laden, at low speed up a steep hill. However, for long-haul trucks, mostly operating at highway speeds on mostly level roads, it may not be necessary to have all the cooling airflow from an open-grille configuration. It can therefore be desirable for fuel consumption purposes, to shut off the entire cooling airflow, or a portion of it, under certain driving conditions dictated by the cooling demands. In Europe, most trucks operating on the roads are of cab-over-engine type, as a consequence of the length legislations present.
Journal Article

Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions

2018-05-22
Abstract The effects of exhaust emissions on public welfare have prompted the US Environmental Protection Agency to take various actions toward understanding, modeling, and reducing air pollution from vehicles. This study was performed to better understand exhaust emissions of heavy-duty diesel-powered tractor-trailer trucks that operate in drayage service, which involves the moving of shipping containers to or from port terminals. The study involved the use of portable emissions measurement systems (PEMS) to measure both gaseous and particulate matter (PM) mass emission rates and record various vehicle and engine parameters from the test trucks as they performed their normal drayage service. These measurements were supplemented with port terminal gate entry/exit logs for all drayage trucks entering the two Port of Houston Authority container terminals.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Onboard Natural Gas Reforming for Heavy Duty Vehicles

2019-01-07
Abstract Powertrain simulations and catalyst studies showed the efficiency credits and feasibility of onboard reforming as a way to recover waste heat from heavy duty vehicles (HDVs) fueled by natural gas (NG). Onboard reforming involves 1) injecting NG into the exhaust gas recycle (EGR) loop of the HDV, 2) reforming NG on a catalyst in the EGR loop to hydrogen and carbon monoxide, and 3) combusting the reformed fuel in the engine. The reformed fuel has increased heating value (4-10% higher LHV) and flame speed over NG, allowing stable flames in spark ignition (SI) engines at EGR levels up to 25-30%. A sulfur-tolerant reforming catalyst was shown to reform a significant amount of NG (15-30% conversion) using amounts of precious metal near the current practice for HDV emissions control (10 g rhodium). Engine simulations showed that the high EGR levels enabled by onboard reforming are used most effectively to control engine load instead of waste-gating or throttling.
Journal Article

Electrifying Long-Haul Freight—Part II: Assessment of the Battery Capacity

2019-01-25
Abstract Recently, electric heavy-duty tractor-trailers (EHDTTs) have assumed significance as they present an immediate solution to decarbonize the transportation sector. Hence, to illustrate the economic viability of electrifying the freight industry, a detailed numerical model to estimate the battery capacity for an EHDTT is proposed for a route between Washington, DC, to Knoxville, TN. This model incorporates the effects of the terrain, climate, vehicular forces, auxiliary loads, and payload in order to select the appropriate motor and optimize the battery capacity. Additionally, current and near-future battery chemistries are simulated in the model. Along with equations describing vehicular forces based on Newton’s second law of motion, the model utilizes the Hausmann and Depcik correlation to estimate the losses caused by the capacity offset of the batteries. Here, a Newton-Raphson iterative scheme determines the minimum battery capacity for the required state of charge.
Journal Article

An Approach for Heavy-Duty Vehicle-Level Engine Brake Performance Evaluation

2019-01-08
Abstract An innovative analysis approach to evaluate heavy-duty vehicle downhill engine brake performance was developed. The vehicle model developed with GT-Drive simulates vehicle downhill control speeds with different engine brake retarding powers, transmission gears, and vehicle weights at sea level or high altitude. The outputs are then used to construct multi-factor parametric design charts. The charts can be used to analyze the vehicle-level engine brake capabilities or compare braking performance difference between different engine brake configurations to quantify the risk of engine retarding power deficiency at both sea level and high altitude downhill driving conditions.
Journal Article

Fatigue Evaluation of Multi-Degree of Freedom, Frequency Domain, Stochastic, Truck Road Load Models

2019-02-11
Abstract A number of semi-deterministic and stochastic formulations of multi-degree of freedom, frequency domain load models for heavy truck chassis are proposed and evaluated. The semi-deterministic models aim at reproducing the damage of a specific vehicle, while the stochastic ones aim to describe a collection of vehicle loads. The stochastic models are divided into two groups: Monte Carlo based and models based on single spectrum matrices. In both cases, the objective is to provide a load model that may be used to produce a design with a certain probability of survival. The goodness of the models is evaluated through a comparison of their damage outcomes with the corresponding damages of a set of time domain loads. This original time domain load set consists of chassis accelerations collected from seven physical trucks.
Journal Article

Prediction and Control of Response Time of the Semitrailer Air Braking System

2019-05-09
Abstract The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time.
Journal Article

Investigation into the Potentials of a Dedicated Multi-Point Injection System for a Production NG Single-Point Heavy-Duty Engine

2018-03-08
Abstract CNG is at present retaining a growing interest as a factual alternative to traditional fuels for SI engines, thanks to its high potentials in reducing the engine-out emissions. Increasing thrust into the exploitation of NG in the transport field is in fact produced by the even more stringent emission regulations that are being introduced into the worldwide scenario. Moreover, the transport sector accounts for the 27% of the overall energy consumptions and up to the 13% in terms of global emissions. The present paper aims at deeply investigating into the potentials of a heavy-duty engine running on CNG and equipped with two different injection systems, an advanced single point (SP) one and a prototype multi-point (MP) one. The considered 7.8-liter engine was designed and produced to implement a SP strategy and hence modified to run with a dedicated MP system.
Journal Article

Investigations on Drive Axle Thermal Behaviour: Power Loss and Heat-Transfer Estimations

2018-03-08
Abstract In the present study, a truck drive axle and its gear set are analysed. As the gear set is a hypoid or a spiral bevel one, sliding and so tooth friction are an important source of dissipation. Other losses are mainly due to rolling element bearings and oil churning. The power losses are first calculated according to relationships given in ISO technical report. As comparison with test results shows great discrepancies, some modifications of the previous formulae are proposed. The thermal exchanges are also reviewed. Finally, two methods to obtain the bulk temperatures of the gear set are compared: a classical approach which focuses on the gear set only and a global approach which considers the complete axle using the thermal-network method.
X