Refine Your Search

Topic

Search Results

Technical Paper

Effect of Renewable Fuel Blends on PN and SPN Emissions in a GDI Engine

2020-09-15
2020-01-2199
To characterize the effects of renewable fuels on particulate emissions from GDI engines, engine experiments were conducted using EN228-compliant gasoline fuel blends containing no oxygenates, 10% ethanol (EtOH), or 22% ethyl tert-butyl ether (ETBE). The experiments were conducted in a single cylinder GDI engine using a 6-hole fuel injector operated at 200 bar injection pressure. Both PN in raw exhaust and solid PN (SPN) were measured at two load points and various start of injection (SOI) timings. Raw PN and SPN results were classified into various size ranges, corresponding to current and future legislations. At early SOI timings, where particulate formation is dominated by diffusion flames on the piston due to liquid film, the oxygenated blends yielded dramatically higher PN and SPN emissions than reference gasoline because of fuel effects.
Technical Paper

Performance of a Heavy Duty DME Diesel Engine - an Experimental Study

2007-10-30
2007-01-4167
Combustion characteristics of dimethyl ether, DME, have been investigated experimentally, in a heavy duty single cylinder engine equipped with an adapted common rail fuel injection system, and the effects of varying injection timing, rail pressure and exhaust gas recirculation on the combustion and emission parameters. The results show that DME combustion does not produce soot and with the use of exhaust gas recirculation NOX emissions can also be reduced to very low levels. However, high injection pressure and/or a DME adopted combustion system is required to improve the mixing process and thus reduce the combustion duration and carbon monoxide emissions.
Technical Paper

Combustion of Fischer-Tropsch, RME and Conventional Fuels in a Heavy-Duty Diesel Engine

2007-10-29
2007-01-4009
This investigation includes a comparison of two Fischer Tropsch (FT) fuels derived from natural gas and a Rapeseed Methyl Ester (RME) fuel with Swedish low sulfur Diesel in terms of emissions levels, fuel consumption and combustion parameters. The engine used in the study was an AVL single cylinder heavy-duty engine, equipped with a cylinder head of a Volvo D12 engine. Two loads (25% and 100%) were investigated at a constant engine speed of 1200 rpm. The engine was calibrated to operate in different levels of EGR and with variable injections timings. A design of experiments was constructed to investigate the effects of these variables, and to identify optimal settings. The results showed that the soot emissions yielded by FT and RME fuels are up to 40 and 80 percent lower than those yielded by the Swedish Diesel. In addition the FT fuel gave slightly lower, and the RME significant higher NOx emissions than the Swedish Diesel.
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

2007-01-23
2007-01-0030
Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Technical Paper

Optical Studies of Spray Development and Combustion Characterization of Oxygenated and Fischer-Tropsch Fuels

2008-04-14
2008-01-1393
Optical studies of combusting diesel sprays were done on three different alternative liquid fuels and compared to Swedish environmental class 1 diesel fuel (MK1). The alternative fuels were Rapeseed Oil Methyl Ester (RME), Palm Oil Methyl Ester (PME) and Fischer-Tropsch (FT) fuel. The studies were carried out in the Chalmers High Pressure High Temperature spray rig under conditions similar to those prevailing in a direct-injected diesel engine prior to injection. High speed shadowgraphs were acquired to measure the penetration of the continuous liquid phase, droplets and ligaments, and vapor penetration. Flame temperatures and relative soot concentrations were measured by emission based, line-of-sight, optical methods. A comparison between previous engine tests and spray rig experiments was conducted in order to provide a deeper explanation of the combustion phenomena in the engine tests.
Technical Paper

Performance of a Heavy Duty DME Engine - The Influence of Methanol and Water in the Fuel

2008-04-14
2008-01-1391
In the study reported here the combustion and emission characteristics of a heavy duty six-cylinder diesel engine fuelled with dimethyl ether (DME) of chemical grade and DME with small and varying amounts of methanol and/or water were experimentally investigated. In addition, the size distribution of emitted particles and selected unregulated emissions were sampled. Methanol and water additions had a very limited effect on emissions, but affected the combustion processes in a way that accentuated the premixed combustion and thus caused more energy to be released early in the cycle. At high load, however, the effect was reversed, due to the lack of distinct premixed combustion. The results confirm that DME combustion does not generate any accumulation mode particles. The particles that are detected are smaller than the soot size range and do not occur in greater numbers than those from a diesel engine in the corresponding size range.
Technical Paper

Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise?

1998-10-19
982537
The CFD model, based on the LANL KIVA-3 computer code, modified to account for the multi-step dimethyl ether, DME/air, oxidation chemistry, was developed and used to study the neat DME combustion dynamics in a constant volume at Diesel-like conditions and in the Volvo AH10A245DI Diesel engine. Constant volume simulations confirm high ignition quality of neat DME in air. The results of engine modeling illustrate that the injection schedule used for Diesel fuel is not optimal for DME. Surprisingly, the positive gain and peak pressure levels comparable with those for Diesel fuel were obtained using an early (∼ -20 ATDC) injection through a nozzle of a larger diameter at reduced injection pressures and velocities (∼150m/s) preventing too rapid spray atomization. At these conditions, combustion heat release has a specific two-stage character with a peak value placed behind the TDC.
Technical Paper

Considerations on Engine Design and Fuelling Technique Effects on Qualitative Combustion in Alcohol Diesel Engines

1998-10-19
982530
This paper depicts the main topics of the experimental investigation on alcohol engine development field, aiming at the engineering targets for the emission levels. The first part of this study was focused on engine design optimization for running on ethanol mixed with poly-ethylene glycol (PEG) as ignition improver. It was shown that some design changes in compression ratio, turbine casing, injector nozzle configuration and exhaust pressure governor (EPG) activation, lead to a better engine thermodynamics and its thermochemistry. The second objective of this study was the investigation of engine performance and emission levels, when the ignition improver diethyl ether (DEE) would be generated on board via catalytically dehydration of ethanol, and used directly as soluble mixture or separately fumigated.
Technical Paper

Performance of a Heavy Duty DME Engine - the Influence of Nozzle Parameters on Combustion and Spray Development

2009-04-20
2009-01-0841
DME was tested in a heavy duty diesel engine and in an optically accessible high-temperature and pressure spray chamber in order to investigate and understand the effect of nozzle parameters on emissions, combustion and fuel spray concentration. The engine study clearly showed that smaller nozzle orifices were advantageous from combustion, efficiency and emissions considerations. Heat release analysis and fuel concentration images indicate that smaller orifices result in higher mixing rate between fuel and air due to reductions in the turbulence length scale, which reduce both the magnitude of fuel-rich regions and the steepness of fuel gradients in the spray, which enable more fuel to burn and thereby shorten the combustion duration.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

Effects of Varying Engine Settings on Combustion Parameters, Emissions, Soot and Temperature Distributions in Low Temperature Combustion of Fischer-Tropsch and Swedish Diesel Fuels

2009-11-02
2009-01-2787
It has been previously shown that engine-out soot emissions can be reduced by using Fischer-Tropsch (FT) fuels, due to their lack of aromatics, compared to conventional Diesel fuels. In this investigation the engine-out emissions and fuel consumption parameters of an FT fuel derived from natural gas were compared to those of Swedish low sulfur diesel (MK1) when used in Low Temperature Combustion mode in a single cylinder heavy-duty diesel engine. The effects of varying Needle Opening Pressure (NOP), Charge Air Pressure (CAP) and Exhaust Gas Recirculation (EGR) according to an experimental design on the measured variables were also assessed. CAP and EGR were found to be the most significant factors for the combustion and emission parameters of both fuels. Increases in CAP resulted in lower soot emissions due to enhanced charge mixing, however NOx emissions rose as CAP increased.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

A New Paraffinic Fuel Impact on Emissions and Combustion Characteristics of a Diesel Engine

2002-07-09
2002-01-2218
Having low aromatic compounds, high cetane rating, higher heat of combustion and almost zero sulphur content, a new paraffinic fuel (NPF), developed by Oroboros AB Sweden, was believed to receive attention as a new alternative fuel. Therefore, further investigation and combustion analyses were conducted in a research single-cylinder diesel engine, where detailed thermodynamic analyses were performed by Burst to File high frequency signal sampling code and by the Dragon software, revealing the real thermochemistry history. The aim of this investigation was an effort to reduce the pollution levels in Santiago de Chile by introducing this new paraffinic fuel (NPF). Experimental results have shown that the NPF fuel has a significant impact not only on the emission levels, but also on other energetic parameters of the engine such as ignition delay, cylinder peak pressure, heat release gradient, indicated efficiency etc.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
Technical Paper

High Pressure Ethanol Injection under Diesel-Like Conditions

2017-03-28
2017-01-0857
Laws concerning to emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are therefore needed to satisfy these new legal requirements and reduce fossil fuel dependency. One way to achieve both objectives is to partially replace fossil fuels with alternatives that are more sustainable with respect to emissions of greenhouse gas, particulates and NOx. As a first step towards the development of a direct injected dual fuel engine using diesel fuel and renewable alcohols such as methanol or ethanol, we have studied ethanol (E100) sprays generated with a standard high pressure diesel fuel injection system in a high pressure/temperature spray chamber with optical access. The experiments were performed at a gas density of ∼27kg/m3 at ∼550 °C and ∼60 bar, representing typical operating conditions for a HD engine at low loads.
Technical Paper

Evaporation of Gasoline-Like and Ethanol-Based Fuels in Hollow-Cone Sprays Investigated by Planar Laser-Induced Fluorescence and Mie Scattering

2011-08-30
2011-01-1889
The evaporation of different fuels and fuel components in hollow-cone sprays at conditions similar to those at stratified cold start has been investigated using a combination of planar laser-induced fluorescence (LIF) and Mie scattering. Ketones of different volatility were used as fluorescent tracers for different fuel components in gasoline-like model fuels and ethanol-based fuels. LIF and Mie images were compared to evaluate to what extent various fuel components had evaporated and obtained a spatial distribution different from that of the liquid drops, as a function of fuel temperature and time after start of injection. A selective and sequential evaporation of fuel components of different volatility was found.
Technical Paper

Modelling of Gasoline and Ethanol Hollow-Cone Sprays Using OpenFOAM

2011-08-30
2011-01-1896
Over the past few years, an open-source code called OpenFOAM has been becoming a promising CFD tool for multi-dimensional numerical simulations of internal combustion engines. The primary goal of the present study is to assess the feasibility of the code for computations of hollow-cone sprays discharged by an outward-opening pintle-type injector by simulating the experiments performed recently by Hemdal et al., (SAE 2009-01-1496) with gasoline and ethanol sprays under the following conditions: air temperature Tair = 295 or 350 K, air pressure pair = 6 bar, fuel temperature Tfuel = 243, or 295, or 320 K, and fuel injection pressure pinj = 50, or 125, or 200 bar. To simulate the experiments, a pintle injector model and the physical properties of gasoline were implemented in OpenFOAM. The flow field calculated using the pintle injector model is more realistic than that yielded by the default unit injector model normally used in OpenFOAM.
Technical Paper

Numerical Analysis of NOx Formation Trends in Biodiesel Combustion using Dynamic ϕ-T Parametric Maps

2011-08-30
2011-01-1929
The use of biodiesel in conventional diesel engines results in increased NOx emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semi-detailed mechanisms for its combustion and the formation of emissions. Parametric φ-T maps and 3D engine simulations were used to assess the impact of using oxygen-containing fuels on the rate of NO formation. It was found that using oxygen-containing fuels allows more O₂ molecules to present in the engine cylinder during the combustion of biodiesel, and this may be the cause of the observed increase in NO emissions.
Technical Paper

Influence of Considering Non-Ideal Thermodynamics on Droplet Evaporation and Spray Formation (for Gasoline Direct Injection Engine Conditions) Using VSB2 Spray Model

2018-04-03
2018-01-0181
This work utilizes previously developed VSB2 (VSB2 Stochastic Blob and Bubble) multicomponent fuel spray model to study significance of using non-ideal thermodynamics for droplet evaporation under direct injection engine like operating conditions. Non-ideal thermodynamics is used to account for vapor-liquid equilibrium arising from evaporation of multicomponent fuel droplets. In specific, the evaporation of ethanol/iso-octane blend is studied in this work. Two compositions of the blend are tested, E-10 and E-85 respectively (the number denotes percentage of ethanol in blend). The VSB2 spray model is implemented into OpenFoam CFD code which is used to study evaporation of the blend in constant volume combustion vessel. Liquid and vapor penetration lengths for the E-10 case are calculated and compared with the experiment. The simulation results show reasonable agreement with the experiment. Simulation is performed with two methods- ideal and non-ideal thermodynamics respectively.
Technical Paper

Testing and Evaluation of Ignition Improvers for Ethanol in a DI Diesel Engine

1995-10-01
952512
The ignition delay of ethanol with different nitrate and polyethylene glycol based ignition improvers was investigated in a single-cylinder DI Diesel engine. The nitrate-based improvers provided a shorter ignition delay than the polyethylene glycol improvers, but the results indicate that the efficiency of the polyethylene glycol improvers increases with the length of the molecular chains. Comparison with reference fuels gives a cetane number of approximately 44 for ethanol with 4% of the best nitrate-based improver versus 40 for ethanol with 7% polyethylene glycol improver. It is shown, that the random ignition delay for all the fuels has a normal distribution, and that the reference fuel of every measurement series has a constant expected ignition delay. Ignition delay measurements in a constant-volume combustion vessel failed to produce the same trends as in the engine for the ethanol fuels.
X