Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
Journal Article

Advanced Knock Detection for Diesel/Natural Gas Engine Operation

As emission limits become increasingly stringent and the price of gaseous fuels decreases, more emphasis is being placed on promoting gas engines. In the field of large engines for power generation, dual fuel combustion concepts that run on diesel/natural gas are particularly attractive. Knock in diesel/natural gas dual fuel engines is a well known yet not fully understood complex phenomenon that requires consideration in any attempt to increase load and efficiency. Thus combustion concept development requires a reliable yet robust methodology for detecting knock in order to ensure knock-free engine operation. Operating parameters such as rail pressure, start of injection and amount of diesel injected are the factors that influence oscillations in the in-cylinder pressure trace after the start of combustion. Oscillations in the pre-mixed combustion phase, or ringing, are caused by the rapid conversion of large parts of the injected diesel.
Technical Paper

Multidimensional Modeling of Injection and Combustion Phenomena in a Diesel Ignited Gas Engine

Using natural gas as a fuel in internal combustion engines is a promising way to obtain efficient power generation with relatively low environmental impact. Dual fuel operation is especially interesting because it can combine the safety and reliability of the basic diesel concept with fuel flexibility. To deal with the greater number of degrees of freedom caused by the interaction of two fuels and combining different combustion regimes, it is imperative to use simulation methods in the development process to gain a better understanding of the combustion behavior. This paper presents current research into ignition and combustion of a premixed natural gas/air charge with a diesel pilot spray in a large bore diesel ignited gas engine with a focus on 3D-CFD simulation. Special attention was paid to injection and combustion. The highly transient behavior of the diesel injector especially at small injection quantities poses challenges to the numerical simulation of the spray.
Technical Paper

H2-Direct Injection – A Highly Promising Combustion Concept

Hydrogen is frequently cited as a future energy carrier. Hydrogen allows a further optimization of internal combustion engines, especially with direct injection. In order to assess various concepts, detailed thermodynamic analyses were carried out. Effects, which can be neglected with conventional fuels (e.g. losses due to injection during compression stroke) are considered. These basics as well as several results from test bed investigations are described within this article. Wall heat losses were found to have a major influence on overall efficiency and are thus investigated in detail, based on local surface temperature measurement. Finally, concepts that allow an increase in engine efficiency and lowest NOx emissions are demonstrated.
Technical Paper

Application and Validation of the 3D CFD Method for a Hydrogen Fueled IC Engine with Internal Mixture Formation

Hydrogen is seen as a promising energy carrier for a future mobility scenario. Applied as fuel in IC engines with internal mixture formation, hydrogen opens up new vistas for the layout of the combustion system. The 3D CFD simulation of internal mixture formation as well as combustion helps to understand the complex in-cylinder processes and provides a powerful tool to optimize the engine's working cycle. The performance of standard simulation models for mixture formation as well as the performance of a user-defined combustion model applied in a commercial CFD-code is discussed within this article. The 3D CFD simulations are validated with measurements obtained from a thermodynamic and from an optical research engine respectively.
Technical Paper

Modeling of Engine Warm-Up with Integration of Vehicle and Engine Cycle Simulation

The incorporation of a detailed engine process calculation that takes into account thermal behavior of the engine and exhaust system is essential for a realistic simulation of transient vehicle operation. This is the only possible way to have a precise preliminary calculation of fuel consumption and emissions. Therefore, a comprehensive thermal network of the engine based on the lumped capacity method has been developed. The model allows the computation of component temperatures in steady state operation as well as in transient engine studies, e.g. investigations of engine warm-up. The model is integrated in a co-simulation environment consisting of a detailed vehicle and engine cycle simulation code. The paper describes the procedure of the co-simulation and presents several examples of warm-up simulations.
Technical Paper

Application of 3D-CFD Methods to Optimize a Gaseous Fuelled Engine with Respect to Charge Motion, Combustion and Knocking

This paper shows extracts from the development process of a lean-burn gaseous fuelled engine for combined heat and power generation. The aim was to optimize the mixture formation, the charge motion and the combustion of an existing multi-cylinder engine. Therefore, experimental investigations on a single cylinder research engine and numerical simulations based on 3-dimensional CFD methods were carried out. The use of CFD methods for the optimization of the engine required intensive development efforts in the field of combustion simulation. In particular, the combustion model developed by Magnussen and Hjertager [1] was modified. Through comparison with the PDF model and results of the engine process calculation, the suitability of this modified combustion model was shown. In addition, a knock model was also developed and implemented in the CFD code in order to determine the knock tendency of different engine concepts.
Technical Paper

New Approaches to Lube Oil Consumption Measurement Based on the Tracer Method

In the research and development of internal combustion engines, there are several drivers for developing an accurate online lube oil consumption (LOC) measurement system. Lube oil consumption is considered to be a root cause of hydrocarbon and particle emissions and lubricating oil autoignition. It also negatively influences the life cycle cost for engine operators. Highly accurate measurement of lube oil consumption must be possible before it can be reduced - or rather optimized - to levels stakeholders will require in the future. State-of-the-art methods such as gravimetric and volumetric measurements are not fully satisfactory for several reasons. Generally, offline LOC measurement is no longer suitable for fast and accurate measuring cycles, oil condition monitoring and wear monitoring. At present, tracer methods are considered to be the most promising approach. However, current tracer methods have their downsides as well.
Technical Paper

Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept

Using natural gas in large bore engines reduces carbon dioxide emissions by up to 25% at a lower fuel cost than diesel engines. In demanding applications with highly transient operating profiles, however, premix gas engines have disadvantages compared to diesel engines because of the potential for knocking and misfire to occur. Operating a gas engine using the diesel cycle requires high gas injection pressures. Furthermore, a source of ignition is needed due to the high autoignition temperature of methane. State-of-the-art solutions inject a small quantity of diesel fuel before introducing the natural gas. One monofuel alternative ignites the gas jets with flame torches that originate in a prechamber. This paper presents the simulation based development of a prechamber ignited high pressure direct injection (HPDI) gas combustion concept and subsequent experimental validation.
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.