Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

A Study on Wear Progress of Plain Bearing under Mixed Lubrication Condition

2011-04-12
2011-01-0609
Recently, automotive engines have been operating under harsh conditions of high-power, low viscosity oil and increase of start-stop (e.g. idling stop). In plain bearing used within engine, as oil film thickness decreases, the frequency of direct contacts on the sliding surfaces between the shaft and the bearing are gradually increasing. In fact, the plain bearings for engines would tend to be used under mixed lubrication and the contacts of the surface roughness asperities sometimes occur between the shaft and the bearing. As a result, the bearing wear on the sliding surfaces is accelerated by the contacts of the roughness asperities. In order to predict the bearing performance exactly, it is very important to understand the change progress of the geometric shape of sliding surfaces caused by the wear.
Technical Paper

Effects of the Design Parameters on Wear and Fatigue of Engine Bearings by EHL analysis

2000-06-12
2000-05-0135
Modern engine bearings have been operating under very harsh conditions. Consequently, a bearing wear propagates for a short time and a fatigue sometimes occurs on high loaded region. To reproduce the bearing damage in actual engines, the operating conditions of engine bearing were simulated on a rig test machine. The bearing wear was measured until the fatigue crack occurred in the simulation test. The wear progressed at the edges of the bearing length and the crack also was observed near the edges. The bearing damage is influenced by the bearing design and operating conditions. The experiment was conducted to change the design parameters in conditions. The experimental results were compared to the calculated results based on the elastohydrodynamic lubrication (EHL) theory. The correlation between bearing damage and bearing performance by theoretical analysis were investigated on effects of the design parameters.
Technical Paper

Theoretical Analysis of Engine Bearing Considering Both Elastic Deformation and Oil Film Temperature Distribution

2001-03-05
2001-01-1076
Recently, the bearing performances have been analyzed by elastohydrodynamic lubrication theory (EHL). However, the oil film temperature is constant within a bearing clearance on this theory. As modern automotive engines are running at high rotational speed, the change of the oil film temperature is remarkable within a bearing clearance. The bearing performances are influenced by the distribution of the oil film temperature. Therefore it is also necessary for the analysis of the bearing performances to consider the effect of the oil film temperature distribution by thermo elastohydrodynamic lubrication theory (TEHL). In this study, the effects of the bearing performances are investigated on connecting rod bearing in general gasoline engine by TEHL. Furthermore, oil film thickness, oil film pressure and oil film temperature of TEHL results are compared with those of EHL.
Technical Paper

Parametric Study for Design Factors on Engine Bearings by using TEHL Analysis

2002-03-04
2002-01-0298
As the downsizing and lightening of the engine are designed, the compact and lightweight of the housing should be required. Therefore, both the engine bearing and the housing are greatly deformed under the severe condition, and a heat generation due to the friction loss increases in the bearings. In this study, on the connecting rod bearing for the automotive engine, the bearing design factors as the oil inlet temperature, the rotational speed, the bearing clearance and the bearing length, are changed as a parameter. The influences of the design factors for the performance of the connecting rod bearing are investigated by using TEHL analysis (Thermo ElastoHydrodynamic Lubrication theory analysis).
Technical Paper

Fretting Phenomenon on Outer Surface of Connecting Rod Bearings for Automotive Engines

1993-01-01
931022
Recent automotive engines for high performance vehicles have been designed for higher speeds and outputs. Not only the combustion load but also the inertia force applied on the connecting rod has been increasing. Automotive engines have also become compact and lighter in weight for needs of lower fuel consumption. For these reasons, the rigidity of the connecting rod has been reduced in comparison with the increasing inertia force. As a result, fretting damage may occur between two surfaces of the connecting rod big end bore and the bearing outer surface, causing breakage of the connecting rod itself. Countermeasures for fretting such as a tighter bearing fit ( interference ) and higher rigidity of the connecting rod big end are generally adopted. But the details for these countermeasures can not be easily predicted at the design stage. Rather they are obtained only by durability tests on the actual engines.
Technical Paper

Experimental Study for the Oil Flow Supplied from Oil Hole on Statically Loaded Bearings

1995-02-01
950947
This study focuses on the oil flow, supplied from the oil hole in plain bearings; the oil flow in bearings that were statically loaded was measured precisely using a test rig. In the case that oil was supplied through an oil hole, experimental results showed that the bearing oil flow depended largely on the circumferential angle of the oil feed hole in relation to the loading direction. When compared with the results of conventional theoretical analysis, it became obvious that the conventional analysis method could not make an exact prediction. The authors have assumed that such difference would come from the oil film extent. Using a transparent bearing so that the behavior of the oil film within the bearing clearance could be visible, the oil film extent for different circumferential positions of the oil feed hole were observed. The bearing oil flow was calculated based on the actually measured oil film extent. The calculated result was compared with the experimental one.
Technical Paper

A Study for Measurement of Oil Film Thickness on Engine Bearing by using Laser Induced Fluorescence (LIF) Method

2003-03-03
2003-01-0243
The focus of this study was to accurately measure the oil film thickness across the width of a connecting rod bearing operating under load. A new experimental method using Laser Induced Fluorescence (LIF) was developed for this purpose. The oil film thickness setup was first calibrated under static load and the accuracy of the system was successfully confirmed. The experiment indicated that the oil film thickness near the outer edges of the bearing was thinner than at the center in all tested conditions. This phenomenon has not been verified experimentally until now. The experimental results were confirmed by Elastohydrodynamic Lubrication (EHL). This study indicates that the experimental method is useful to prove the calculation.
Technical Paper

A Study on Engine Bearing Wear and Fatigue Using EHL Analysis and Experimental Analysis

1999-05-03
1999-01-1514
The possibility of predicting engine bearing durability by elastohydrodynamic lubrication (EHL) calculations was investigated with the aim of being able to improve durability efficiently without conducting numerous confirmation tests. This study focused on the connecting rod big-end bearing of an automotive engine. The mechanisms of wear and fatigue, which determine bearing durability, were estimated by comparing the results of EHL analysis and experimental data. This comparison showed the possibility of predicting the wear amount and the occurrence of fatigue by calculation.
Technical Paper

A Study for Wear and Fatigue of Engine Bearings on Rig Test by Using Elastohydrodynamic Lubrication Analysis

1999-03-01
1999-01-0287
Engine bearings today are operating under very harsh conditions. Consequently, a wear propagates for a short time and a fatigue sometimes occurs on the bearings. In present study, on the rig test machine, the operating conditions of engine bearing were simulated to reproduce the bearing damage. The bearing wear was measured until the fatigue crack occurred. The bearing wear increased at the edges of the bearing length and the crack also was observed near the edges. The experimental results were compared to the calculated results based on the elastohydrodynamic lubrication (EHL) theory. The correlations between the bearing damage and the bearing performances by the theoretical analysis were investigated.
X