Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Application of Shape Memory Heat Engines to Improving Vehicle Fuel Economy

1996-04-01
91A128
Shape memory materials undergo temperature-induced martensitic phase transformations that involve reversible dimensional changes. In performing these changes in shape, the shape-memory material is able to do work against external constraints, and this is the basis for shape-memory low-temperature heat engines. The transformation temperatures on heating and cooling are often not very different (little hysteresis) and are well defined and reproducible. Furthermore, these temperatures can be adjusted by varying the composition of the shape memory alloy. Internal combustion engines dissipate approximately two-thirds of the fuel energy as heat to the exhaust and coolant systems. A low-temperature heat engine could convert a fraction of this heat energy to useful work. This paper discusses the conceptual basis for the application of shape memory heat engines to internal combustion engine powered vehicles. Metallurgical and thermodynamic factors are discussed, as well as engine efficiency.
Technical Paper

State of the Art in the Use of Stainless Steel for Bus and Car Parts Manufacture

1996-04-01
91A127
The paper describes recent developments in the use of stainless steel to make the parts of buses which are most liable to corrosion. Sheet metal is used for the outer panelling, and square and rectangular tubes for the body. The types of steel used and their fabrication are analyzed. Finally, a brief description is given of the stainless steels used to make car exhaust systems.
Technical Paper

The Modeling of Mold Filling in Structural Reaction Injection Molding

1996-04-01
91A118
The main use of FRC in automobiles, with the exception of a few specialized low volume vehicles, has been until now in semistructural parts. One of the most promising process in development today, that may play major role in future structural composite fabrication, is based on SRIM technology. The rapid and extensive introduction of this process goes also through the development of deeper theoretical knowledge of the process and the development of computer simulation to aid mold design and choice of proper processing parameters. To contribute SRIM advancement, a preliminary model has been developed for viscosity changes, extent of the reaction and temperature rises, associated with the mold filling stage, as well as a simple software to evaluate the pressure drop through different combinations of reinforcements.
Technical Paper

Integration and Validation of Sheet Metal Forming Simulation Computer Programs Into the Design Process

1996-04-01
91A121
In order to improve the design of drawn parts and to reduce the number of trial and error tests, Renault has undertaken the development and the validation of various finite element procedures and codes. This paper describes the function of each software and its level of integration into the design process. One of them is already an operational tool used be planners whilst the others are still in the validation phase. Selected examples show typical applications of the computer programs on automotive parts.
Technical Paper

Implications of Future Scrap Car Handling for Design of Cars

1996-04-01
91A124
In this paper the socio-economic and technical problems of the handling of car wrecks are discussed. The recovery of metals as a goal for shredder operations will increasingly be supplemented with the recovery of other materials such as polymers. In order to deal economically and technically with polymer materials, it is necessary to know in advance which type of wreck handling will be used. Also optimization of shredder operations allow less freedom to incorporate a variety of materials when compared with selective dismantling or disassemble of cars. It is argued that various technical solutions have to be accompanied by increased cooperation along the firms that are connected to the handling of car wrecks. Cooperation between the scrap context and designers is essential, in order to optimize dismantling practices according to criteria of environmentally preferred solutions.
Technical Paper

Glass Reinforced Thermoplastic Composites: Effects of Ribs and Different Types of Reinforcement on the Characteristics of the Molded Part

1996-04-01
91A119
Compression molding of thermoplastic sheets, consolidated or non- consolidated, reinforced with glass fibers (GMT, GRT) is applied as an economic production process in the automotive industry. The aim of this work is to evaluate how the physical and mechanical strength characteristics depend on the presence or absence of ribs and how component performance may be changed by modifying the molding parameters, altering the content and orientation of the reinforcement fibers in the ribbed areas. For this purpose, two statistical designs will be considered, the first carried out on a box type component without ribs, the second on the same component with a set of internal ribs. Two different materials with a PP matrix will be tested, a GMT reinforced with continuous random glass fibers and a 12 mm random glass fibers composite.
Technical Paper

Critical Compression Loads on Aluminum Honeycomb Panels

1996-04-01
91A131
The purely theoretical evaluation of critical compression loads seems complex and not very reliable in the case of honeycomb panels, on account of the numerous parameters in play and their complex interrelationships. This report provides the designer with a fast tool for preliminary calculations, consisting of a finite-element mathematical model with elastic-linear code (which can be processed using a PC), which makes it possible to obtain information very closely resembling the real situation.
Technical Paper

The Development of Plastic Lenses for Vehicle Headlamps

1996-04-01
91A111
The pending changes in European law enabling the use of plastic lenses on vehicle headlamps provide an opportunity for further advancement of vehicle styling, lighting performance and aerodynamic efficiency. Plastic lenses can also provide a useful weight saving and contribute to energy savings during the lifetime of the vehicle. This paper discusses the current requirements, technologies and solutions for plastic lenses, and indicates the way this advance can impact on the evolution of lighting products.
Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Technical Paper

Actuation and Fastening With Shape Memory Alloys in the Automotive Industry

1996-04-01
91A103
As a result of a phase transformation, shape memory alloys can change their shape when the temperature changes. This unusual effect can be utilized in actuation and fastening components for automotive applications. Springs made from Ni-Ti shape memory alloys change their rate in a predetermined temperature range due to a significant change in the elastic modules of the material. They can be used as sensor-actuators in pressures control valves or oil cooler by-pass valves in automatic transmissions or to compensate for oil viscosity changes in shock absorbers or thermal expansion of dissimilar materials in gear boxes. If the recovery is constrained, i.e., shape memory element is physically prevented from returning into its original shape, a potentially high stress is generated. This effect is used in fastener rings. Fasteners made from Ni-Ti alloys provide high reliability and easy installation for braid terminations, locating of shaft mounted components, connectors and hose clamps.
Technical Paper

Ceramic Coating for Aluminum Engine and Components

1996-04-01
91A105
The trend toward lighter vehicles for improved performance has recently introduced the use of aluminum and plastic materials for vehicle bodies and drive trains. In particular, the aluminum alloy block foar engine application is certain to reappear. The soft aluminum cylinder liner will require additional treatment before acceptance. Three possible approaches appear to solve the aluminum cylinder liner dilemma. These approaches are: 1) use of high silicon aluminum such as the 390 aluminum; 2) insert or cast steel liners into the aluminum engine block; and 3) ceramic coat the low cost standard aluminum engine block. Each has known advantages and disadvantages. It is the purpose of this paper to present the merits of option 3, the ceramic coated aluminum cylinder bore, from the standpoint of low weight, cost, and tribological effectiveness. The advantages of approaches 1) and 2) are obvious. High temperature after treatment of the ceramic engine components is not required.
Technical Paper

A Fatigue Data-Bank Developed as a Design Support for Structures in Composite Materials

1996-04-01
91A092
A data bank developed to give a concrete help to the designer concerned with fatigue-prone structures made of composite materials is described. The data bank not only collects the available results of fatigue tests on these materials, but also makes easy their statistical analysis and comparison for design purposes. It is then believed to constitute also an useful research instrument for the development of design rules for well defined classes of composite materials.
X