Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Advances in Thermoset Injection Molding

1996-04-01
91A102
Injection molding of thermosetting materials such as low profile SMC/BMC composites found increasing application in the transportation industry in the eighties. Such automotive parts as front end panels and rear/hatchback doors have grown in usage. The rear doors have reached exceptional production levels of 2600/day in a single plant. The injection process offers the advantages of greater automation for the mass production of body panel parts compared in compression molding. However, the injection molding of fiber reinforced low profile composites suffers from a severe reduction in physical properties. This is particularly true for impact strength which can be one-third that of similar compression molding materials. A primary reason for this is due to the degradation of the reinforcement during the processing/molding. Efforts at increasing the physical properties through processing changes have many times caused problems with the surface smoothness of the moldings.
Technical Paper

Engineering Plastics for Novel Automotive Applications

1996-04-01
91A093
Not only have engineering thermoplastics secured an accepted place in automotive manufacture, but also their penetration of areas traditionally the sole domain of metals, is growing. One group of materials in particular is driving this trend; that of advanced thermoplastic composites. Used primarily in non-appearance, semi-structural parts, thermoplastic composites are opening the way for engineering polymers to be used in large components such as tailgates, technical fascia's or front end modules, side doors and bonnets, amongst many other novel applications whose engineering criteria could previously be met only by steel. This paper will look at both the new opportunities for engineering plastics in automotive applications and at the materials capable of economically satisfying their demands
Technical Paper

Structual Problems in the Design of a Car-Component in a Composite Material

1996-04-01
91A096
The paper summarizes the results of an experimental and numerical study performed on the rear door of a car of large production. It was carried out with a DMC ("dough molding compound") plastic material with short glass fibers. This technology makes strong the link between the production process and the mechanical properties of the component. Such properties really vary according to the fibers orientation, the distance from the injection points and the geometrical complexity of the different regions of the molded component. In some regions the fibers orientation is well defined, in others the orientation can be expressed only in average tendency terms, with a large scatter band. It is natural to think that the material modifies its behavior from region to region, showing marked orthotropic properties or, on the contrary, a compensation isotropic trend.
Technical Paper

Sound Quality of Impulsive Noises: An Applied Study of Automotive Door Closing Sounds

1999-05-17
1999-01-1684
This paper discusses four general attributes which quantify the character of an impulsive sound event. These attributes include the time duration, amplitude and frequency content of the impulsive noise. A three dimensional plot relating time, frequency and amplitude have been developed for the presentation of the measured data. This format allows graphic illustration of the noise event, providing fast interpretation and communication of the measured sound. Application of this methodology to the sound of an automotive door closing event is presented here. Representative door closing sound events are analyzed, with correlation presented between the attributes above to dynamic events of the physical hardware within the door and vehicle systems. Modifications of the door-in-white, internal door hardware, seal systems and additional content are investigated for their effect on the sound quality of the door closing event. Finally, recommended values for these attributes are presented.
Technical Paper

A New Wavelet Technique for Transient Sound Visualization and Application to Automotive Door Closing Events

1999-05-17
1999-01-1682
Transient automotive sounds often possess a complex internal structure resulting from one or more impacts combined with mechanical and acoustic cavity resonances. This structure can be revealed by a new technique for obtaining translation-invariant scalograms from orthogonal discrete wavelet transforms. These scalograms are particularly well suited to the visualization of complex sound transients which span a wide dynamic range in time (ms to s) and frequency (∼100Hz to ∼10kHz). As examples, scalograms and spectrograms of door latch closing events from a variety of automotive platforms are discussed and compared in light of the subjective rankings of the sounds.
Technical Paper

Door System Design for Improved Closure Sound Quality

1999-05-17
1999-01-1681
Door closing sounds are an important element of the craftsmanship image of a vehicle. This paper examines the relationship between closure sound quality and door system design. The perception of door closing sound quality is shown to be primarily related to it's loudness and sharpness. Of the two, sharpness is more important than loudness. Other factors, like ring-down may also affect closure sound quality. The door system is made up of a number of components. The most important in terms of sound quality are the door and body structure, latch, and door seals. Each of these are classified as either a sound source, a transmission path or a sound radiator. Methods for improving the design of these components for good closure sound quality are discussed in some detail.
Technical Paper

Human Resources Integration Master Plan: A Response to Revolving Door Management

2000-04-11
2000-01-2128
Taylor (1999) reported the effects of national cultures on the work values of aviation mechanics and Patankar (1999) reported the effects of their professional and organizational cultures. Taylor and Patankar (1999) found effects of national and professional cultures on the outcomes of maintenance human factors programs. Considering those effects, this paper focuses on a strategy that would encourage the champions of human factors programs to develop a human resources master plan and integrate it with the organizational culture.
Technical Paper

Open Bay Door Analysis Process for Hubble Space Telescope Servicing Mission 3B

2001-07-09
2001-01-2218
During Servicing Mission 3B (SM3B) for the Hubble Space Telescope (HST) the Power Control Unit (PCU) will be replaced. The PCU was not originally designed to be replaced on orbit but was later identified as having the capability of being removed and replaced on orbit. The PCU has many connectors and bolts, some of which are difficult for the astronauts to reach. Due to the added difficulty, the replacement will take an entire six hour Extra Vehicular Activity (EVA) day. For four of these six EVA hours the door of the Support Systems Module (SSM) Equipment Section (ES) bay where the PCU is found will be open to allow the astronauts access to the PCU and its connectors. This bay, SSM ES Bay 4, also contains the four Power Distribution Units (PDUs), which house the busses, switching, fusing, and monitoring circuits that distribute power to the telescope. These PDUs are attached to the bay door and will be seeing a much colder than normal environment with the door open.
Technical Paper

Family of High Modulus (HMG) Nylon Based Plastics Increases Mileage and Reduce Weight

2001-10-01
2001-01-3423
Resent developments were oriented on two high-flow, high-modulus grades fiber-glass reinforced nylon 6 (HMG series) grades for transportation, autos and other industrial applications requiring high stiffness, high strength and high fatigue resistance. These materials combined the following improved technological (injection molding, vibration and hot plate welding, etc.) and mechanical performance properties such as greater dimensional stability, higher short-term (strength and stiffness) and long-term (fatigue and creep with the influence of temperature effects). Both HMG series grades Capron®1 HMG10 and Capron® HMG13 - are for injection molded parts where stiffness, strength, impact resistance, and good surface and improved appearance are preferred. The current and possible applications of these plastics includes auto mirror housing brackets, clutch pedals, clutch master cylinders, ski bindings, steering wheels, levers, auto seat frames, door handles and door lock mechanisms.
Technical Paper

Advanced High-Strength Steels and Hydroforming Reduce Mass and Improve Dent Resistance of Light Weight Doors In UltraLight Steel Auto Closures Project

2001-10-16
2001-01-3116
In May 2000, the UltraLight Steel Auto Closure (ULSAC) Consortium unveiled a lightweight frameless steel door design that achieves 42 percent weight savings over the average benchmarked (1997 model year vehicles) frameless door and 22 percent savings over the lightest benchmark, a framed door. ULSAC was commissioned by this international consortium of 31 sheet steel producers to assist their automotive customers with viable lightweighting steel solutions. The ULSAC design and engineering team, Porsche Engineering Services, Inc. (PES), Troy, Michigan USA, accomplished this significant weight savings by using high and ultra high strength steels, combined with technologies such as tailored blanks and hydroforming. The door outer panel of this first round of demonstration hardware is made of stamped 0.7 mm Bake Hardenable (BH) 260 sheet steel.
Technical Paper

Economic Analysis of Two Different Door Architectures

2001-10-16
2001-01-3045
In the past, materials selection for automotive components has been managed on a part-by-part basis. As a result, the economics of these selections have often been reduced to comparing material price/property ratios, rather than technological options. More recently, the debate around modular designs and their advantages and disadvantages has shifted the emphasis towards a higher level viewpoint that deals with more complex systems. This approach provides the opportunity to search for new combinations of product architecture and materials that may exploit specific material advantages better than the classic part-by-part replacement. This paper presents the results of an economic analysis for two different door designs. The door designs differ both with regards to their product architectures and with regards to the materials they employ.
Technical Paper

Analysis and Design of Slow Build Studies During Sheet Metal Assembly Validations

2001-10-16
2001-01-3052
Several manufacturers are adopting six sigma programs in efforts to reduce stamping variation. This requires the crucial step of establishing dimensional relationships for the stamping dimensional outputs that become key process inputs to the assembly process. This paper describes a methodology used to determine the root cause of dimensional changes in a front door assembly. Among the key findings in this study are the importance of understanding the effects of the datum-locating scheme and the significant influence of assembly processing variables, rather than stamping variability, on the final door assembly dimensional quality.
Technical Paper

Massive Point Cloud Data Sets and Single Point Measurement Acquisition in the Production Floor Environment

2001-10-16
2001-01-3053
In typical production lines of automotive manufacturers, body parts are produced every several minutes. Sample parts are measured at certain intervals with a CMM machine at approximately 30 points to verify correct production. The points measured on each sample part are compared with reference points of a golden part or with the CAD model. This paper presents results achieved with a high-accuracy non-contact 3D measurement system capable of measuring both the full surface of sample parts and surface points (surface point measurement, or SPM), after production, on the production floor. The technology used enables high-speed image acquisition of large data sets together with CMM-like capability of measuring individual points, both accomplished simultaneously.
Technical Paper

Effects of Vehicle A-pillar Shape on Local Mean and Time-Varying Flow Properties

2001-03-05
2001-01-1086
Separated flow is the main generator of aerodynamic noise in passenger vehicles. The flow around the A-pillar is central to the wind noise as many modern vehicles still have high fluctuating pressures due to flow separations in this region. Current production vehicle geometry is restricted due to the amount of three dimensionality possible in laminated windscreen glass (and door opening etc). New materials (e.g., polycarbonate) offer the possibility of more streamlined shapes which allow less or no flow separation. Therefore, a series of experimental investigations have been conducted to study the effects of the A-pillar and windshield geometry and yaw angles on the local flow and noise using a group of idealised road vehicle models. Surface mean and fluctuating pressures were measured on the side window in the A-pillar regions of all models at different Reynolds numbers and yaw angles.
Technical Paper

Research on the Application of Aluminum Door Beam for Automobiles

2000-06-12
2000-05-0238
Door beams are attached inside car doors as one way to protect passengers from shock when the car is side impacted. Though door beams made of high tensile strength steel predominate now, the use of aluminum is growing rapidly to reduce weight. The effects of cross-section and types alloy on the performance of aluminum extrusions as door beams were investigated. As the result, aluminum door beams were developed which have bending proper2ties comparing favorably with those of door beams made of high tensile strength steel with a tensile strength of 1470 N/mm2. Since the shape of the cross-section of aluminum extrusions is versatile, non-symmetric cross-sections composed of regions with different wall thicknesses and lengths can be produced. On the basis of this technology, a technology to design door beams with required bending properties for any car model was developed. This technology is already been utilized in various automobiles.
Technical Paper

E-Modularization of Rear Closures: Integration of New Generation of Electrical Systems

2001-03-05
2001-01-0693
This paper presents the potential for rear closure submodules. Side door modules and lightweight rear closures have attracted a lot of attention in recent years. However the characteristics of future liftgates allow the design of specific mechatronic sub-modules (e-modulesTM). Beside structure, rear closures satisfy three main functions: rear vision, rear signaling and rear access. All are undergoing a generation change that will be outlined in the first part of this paper, system by system. Each time the rationale behind modular integration, whether electronic or mechanical, will be reviewed. The second part presents examples of e-modulesTM that illustrate the potential gains in terms of ease of assembly, packaging optimization and network integration.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

A Magnetorheological Door Check

2001-03-05
2001-01-0619
Several shortcomings of mechanical door checks are overcome using a magnetorheological damper. Because the damper is electrically actuated, it can check in any desired position. The logical decision to activate or release the door check can be made either by passive circuitry based on input signals from switches attached to door handles or under microprocessor control, in which case the decision can take into account a variety of unconventional input factors, including the magnitude of the force applied to the door, the rate of change of the applied force, and the angle of door opening. With the addition of an appropriate proximity sensor, the controllable damper can prevent the door from inadvertently hitting a nearby obstacle. Details of the damper mechanism are described, and several implemented control strategies, both passive and microprocessor based, are discussed.
Technical Paper

Development of Cabin Air Quality System

2001-03-05
2001-01-0292
In recent years, concern among car users regarding air quality has been steadily increasing. Pollen and diesel vehicle exhaust gases entering the cabin and smoke from fellow passengers not only reduce the quality of experience for everyone in the car, but are also harmful to the health. Therefore, we developed: 1 A low pressure loss, dust-removing, selectively deodorizing filter that effectively absorbs malodor from diesel vehicle exhaust gas, without affecting A/C performance. 2 An automatic intake door control system that excludes outside exhaust gas 3 An optic catalytic air purifier with germ removal and long life deodorizing functions. We here report on the system combining these functions.
Technical Paper

Modular door system for side impact safety of motor vehicles

2001-06-04
2001-06-0167
Side impact collision is one of the toughest safety challenges facing the Auto Industry today. Over thirteen thousand deaths, due to side impact, occurred during 1998 in the United States alone. The main difficulty in designing for side impact collisions is the limited crumple zone between the impacting vehicle and the impacted occupant. This paper presents a proprietary side impact protective door system within the space between the outer skin of a car door and the occupant, which will be as efficient as those already standard in frontal impact. The main objective for introducing the side impact structural system is to maximize energy absorption and minimize injury to the occupant. The developed structural side impact door system acts as a Primary Structure, to be assembled as a truly modular entity. This primary structure is also packaging modular in the sense that it acts as a carrier for the door latch, window regulator and hinges.
X