Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Modeling of Mold Filling in Structural Reaction Injection Molding

1996-04-01
91A118
The main use of FRC in automobiles, with the exception of a few specialized low volume vehicles, has been until now in semistructural parts. One of the most promising process in development today, that may play major role in future structural composite fabrication, is based on SRIM technology. The rapid and extensive introduction of this process goes also through the development of deeper theoretical knowledge of the process and the development of computer simulation to aid mold design and choice of proper processing parameters. To contribute SRIM advancement, a preliminary model has been developed for viscosity changes, extent of the reaction and temperature rises, associated with the mold filling stage, as well as a simple software to evaluate the pressure drop through different combinations of reinforcements.
Technical Paper

Simulors, An Innovative Tool for Molds Development

1996-04-01
91A117
Mold designers and foundrymen spend a lot of time in developing molds without knowing exactly the phenomena which take place inside. Simulor, which has been used in an industrial environment for two years, offers the solution to make foundrymen understand what happens during the filling of the mold and the solidification of the part. Based on navier-stokes and heat transfer equations, simulor provides speed distribution and metal front evolution in the cavity and thermal map in the mold and the part. Some examples with different metals (cast iron, aluminum alloy) cast with various processes (sand or die casting, low pressure or gravity casting) will be given. This new tool will given foundrymen the opportunity to test the mold before having it machined and will also allow reduction in development delays.
Technical Paper

Integration and Validation of Sheet Metal Forming Simulation Computer Programs Into the Design Process

1996-04-01
91A121
In order to improve the design of drawn parts and to reduce the number of trial and error tests, Renault has undertaken the development and the validation of various finite element procedures and codes. This paper describes the function of each software and its level of integration into the design process. One of them is already an operational tool used be planners whilst the others are still in the validation phase. Selected examples show typical applications of the computer programs on automotive parts.
Technical Paper

Implications of Future Scrap Car Handling for Design of Cars

1996-04-01
91A124
In this paper the socio-economic and technical problems of the handling of car wrecks are discussed. The recovery of metals as a goal for shredder operations will increasingly be supplemented with the recovery of other materials such as polymers. In order to deal economically and technically with polymer materials, it is necessary to know in advance which type of wreck handling will be used. Also optimization of shredder operations allow less freedom to incorporate a variety of materials when compared with selective dismantling or disassemble of cars. It is argued that various technical solutions have to be accompanied by increased cooperation along the firms that are connected to the handling of car wrecks. Cooperation between the scrap context and designers is essential, in order to optimize dismantling practices according to criteria of environmentally preferred solutions.
Technical Paper

Glass Reinforced Thermoplastic Composites: Effects of Ribs and Different Types of Reinforcement on the Characteristics of the Molded Part

1996-04-01
91A119
Compression molding of thermoplastic sheets, consolidated or non- consolidated, reinforced with glass fibers (GMT, GRT) is applied as an economic production process in the automotive industry. The aim of this work is to evaluate how the physical and mechanical strength characteristics depend on the presence or absence of ribs and how component performance may be changed by modifying the molding parameters, altering the content and orientation of the reinforcement fibers in the ribbed areas. For this purpose, two statistical designs will be considered, the first carried out on a box type component without ribs, the second on the same component with a set of internal ribs. Two different materials with a PP matrix will be tested, a GMT reinforced with continuous random glass fibers and a 12 mm random glass fibers composite.
Technical Paper

Critical Compression Loads on Aluminum Honeycomb Panels

1996-04-01
91A131
The purely theoretical evaluation of critical compression loads seems complex and not very reliable in the case of honeycomb panels, on account of the numerous parameters in play and their complex interrelationships. This report provides the designer with a fast tool for preliminary calculations, consisting of a finite-element mathematical model with elastic-linear code (which can be processed using a PC), which makes it possible to obtain information very closely resembling the real situation.
Technical Paper

The Development of Plastic Lenses for Vehicle Headlamps

1996-04-01
91A111
The pending changes in European law enabling the use of plastic lenses on vehicle headlamps provide an opportunity for further advancement of vehicle styling, lighting performance and aerodynamic efficiency. Plastic lenses can also provide a useful weight saving and contribute to energy savings during the lifetime of the vehicle. This paper discusses the current requirements, technologies and solutions for plastic lenses, and indicates the way this advance can impact on the evolution of lighting products.
Technical Paper

Evaluation of Advanced Aluminum Alloys and Mmc Obtained By Means of a Spray Depositon Approach

1996-04-01
91A112
The paper review some recent efforts, made by the aluminum industry, towards the development of new advanced alloys for aerospace applications; unconventional production technologies and MMC occupy an outstanding position in this context. Raid solidification processes are currently used for obtaining advanced alloys and, among them, the powder metallurgy route is one of the most commonly applied, since it has reached a considerable level of maturity. Experimental results of PM materials are shown and discussed in order to appreciate the potentialities of this class of materials and some recent further progress is shown: the spray deposition approach (osprey process). After having described the main features of the osprey process, some results obtained at the Department of Aerospace Engineering of Pisa about the development of high strength Al-alloy and MMC obtained by means of the osprey process are shown.
Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Technical Paper

A Fatigue Data-Bank Developed as a Design Support for Structures in Composite Materials

1996-04-01
91A092
A data bank developed to give a concrete help to the designer concerned with fatigue-prone structures made of composite materials is described. The data bank not only collects the available results of fatigue tests on these materials, but also makes easy their statistical analysis and comparison for design purposes. It is then believed to constitute also an useful research instrument for the development of design rules for well defined classes of composite materials.
Technical Paper

Structual Problems in the Design of a Car-Component in a Composite Material

1996-04-01
91A096
The paper summarizes the results of an experimental and numerical study performed on the rear door of a car of large production. It was carried out with a DMC ("dough molding compound") plastic material with short glass fibers. This technology makes strong the link between the production process and the mechanical properties of the component. Such properties really vary according to the fibers orientation, the distance from the injection points and the geometrical complexity of the different regions of the molded component. In some regions the fibers orientation is well defined, in others the orientation can be expressed only in average tendency terms, with a large scatter band. It is natural to think that the material modifies its behavior from region to region, showing marked orthotropic properties or, on the contrary, a compensation isotropic trend.
Technical Paper

Fe Model Adjustment of a Composite Material Car-Body By Means of Experimental Modal Analysis on the Prototype

1996-04-01
91A095
A procedure adopted to verify and update the finite elements model of an electric powered car-body manufactured from composite materials is described. Experimental results, obtained from modal testing of the prototype, are used in order to identify and correct discrepancies in the FE model. The availability of a highly reliable FE model allows to simulate structural modifications by computer, optimizing the use of composites and reducing in the same time at minimum prototypes construction. The approach followed suggests a possible remarkable reduction in product development costs and duration. The work has been performed within a larger program for the development of thermoplastic composite materials, with particular attention to transportation market.
Technical Paper

Finite Modeling of Sheet Stamping Operations

1996-04-01
91A089
A wide variety of choices confront the potential user of finite element modeling (FEM) for sheet forming analysis. In the first part of this paper, a brief summary of the basic formulations available and sample references to them are provided. Several kinds of finite element models have been developed for analyzing sheet forming operations at OSU and in the Center for Net Shape Manufacturing. These variations began with in-plane FEM and grew into 3-D versions. In the second part of this paper, some key conclusions from these developments will be summarized. More recently, a section analysis program (SHEET-S) has been prepared and transferred to industry. The capabilities and limitations of SHEET-S will be presented in greater detail, including comparisons with experiments and industrial trials.
Technical Paper

Practical Applications of Composite Exotic Hybrids and Their Structural Use in Vehicles

1996-04-01
91A098
An overview of high strength thermoset and thermoplastic composites will provide a basis of comparison with exotic hybrid composites. A specific theoretical application for a very high strength unibody application will be presented and test results evaluated. A critical overview of immediate applications will be presented and evaluated. In conclusion, it will be suggested that a uniform standard of performance be established for the practical application's requirements for these materials
Technical Paper

U.S. and California Vehicle Emissions Control Programs Effectiveness and Application of Experience

1988-03-01
871148
Many areas of the world are in various stages of development which frequently includes a rapid increase in the motor vehicle population. As a result, some areas are beginning to show the effect of increased motor vehicle use on air pollution. The vehicle's contribution to California's air pollution has long been recognized and studied, and measures have been implemented to reduce emissions from motor vehicles. The history of light duty vehicle emission control in the South Coast Air Basin of California is reviewed. Emission reductions achieved, current levels, projected future emissions and the need for further emissions reductions from light duty vehicles are discussed. For other areas of the world where motor vehicles contribute to air pollution, suggestions are made which can improve the effectiveness of emission control efforts; which should be consistent with political and economic realities, and efforts to achieve international harmonization of standards.
Technical Paper

A Study on the Performance of Guideway Bus Steering Control System

1988-03-01
871231
In this paper a computer simulation study on the effects of steering parameters on lateral dynamics of the guideway bus to contribute to a development practice of designing optimum steering control system are dealt with. A stability limit of vehicle lateral motion is analyzed and an emphasis is laid on the effects of moment of inertia of a conventional steering wheel and lateral elasticity of the guide rail which have proven to reduce the critical vehicle speed. It is pointed out conclusively that a normal bus equipped with additional simple guidance equipments can be guided smoothly on a simple guideway at adequately high vehicle speed.
Technical Paper

A Numerical Simulation of the Unsteady Laminar Flame Propagation in a Closed Cylindrical Combustion Bomb

1988-03-01
871174
Unsteady laminar flame propagation confined in a closed cylindrical combustion bomb is studied by numerical computation for an axisymmetric two-dimensional laminar flame. Computation includes complete two-dimensional unsteady Navier-Stokes equations of change for a chemically reacting propane-air mixture. Implicit Continuous fluid Eulerian, Arbitrary Lagrangian Eulerian finite difference technique, simplified reaction kinetics models, and artificial flame stretching transformation and inverse transformation were adopted in the calculation. Physically realistic flame behavior can be demonstrated even with rather coarse computing cell size, simplified reaction kinetics models, and personal computer level low power computing machines.
X