Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ERRATUM

2017-09-17
2017-01-2520.1
This is a errata for 2017-01-2520.
Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0925
The objective of this research is a detailed investigation of multiple injections in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the performance and emissions benefits of multiple injections via experiments and simulations in a 0.48L signal cylinder light-duty engine operating at 2000 r/min and 5.5 bar IMEP. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2]. This study examines the effects of fuel split distribution, injection event timing, rail pressure, and boost pressure which are each explored within a defined operation range in LTC.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Journal Article

Model Based E85 Cold Start Optimization for DISI Engines

2009-06-15
2009-01-1909
The startability of SI engines, especially of DISI engines, is the greatest challenge when using ethanol blended fuels. The development of a suitable injection strategy is therefore the main engineering target when developing an ethanol engine with direct injection. In order to limit the test efforts of such a program, a vaporization model has been created that provides the quantity of vaporized fuel depending on pressure and on start and end, respectively number and split relation of injections. This model takes account of the most relevant fuel properties such as density, surface tension and viscosity. It also considers the interaction of the spray with cylinder liner, cylinder head and piston. A comparison with test results shows the current status and the need for action of this simulation model.
Journal Article

Multi-Zone DI Diesel Spray Combustion Model for Thermodynamic Simulation of Engine with PCCI and High EGR Level

2009-06-15
2009-01-1956
A multi-zone, direct-injection (DI) diesel combustion model, the so-called RK-model, has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model takes into account: transient evolution of fuel sprays, interaction of sprays with swirl and walls, evolution of near-wall flow formed after spray-wall impingement depending on impingement angle and local swirl velocity, interaction of Near-Wall Flows (NWF) formed by adjacent sprays, influence of temperatures of gas and walls in the zones on evaporation rate. In the model the fuel spray is split into a number of specific zones with different evaporation conditions including zone on the cylinder liner and on the cylinder head. The piston bowl is assumed to be a body of revolution with arbitrary shape. The combustion model supports central and non-central injector as well as the side injection system. NOx formation model uses Detail Kinetic Mechanism (199 reactions with 33 species).
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Stability Analysis of a Disc Brake with Piezoelectric Self-Sensing Technique

2009-10-11
2009-01-3034
Piezoelectric self-sensing allows to measure frequency response functions of dynamical systems with one single piezoelectric element. This piezoceramics is used as actuator and sensor simultaneously. In this study, a model-based piezoelectric self-sensing technique is presented to obtain potential squealing frequencies of an automotive disc brake. The frequency-response function of the brake system is obtained during operation by measuring the current flowing through the piezoelectric element while the piezoelectric element is driven by a harmonic voltage signal with constant amplitude. The current flow is composed of the part which is required to drive the piezoelectric element as an actuator and a second part which is the sensor signal that is proportional to the vibration amplitude of the attached mechanical system. Typically the first part is dominant and the influence of the mechanical system is marginal.
Journal Article

Effects of Chemical Components and Manufacturing Process of Cast Iron Brake Disc on its Resonant Frequency Variation

2009-10-11
2009-01-3030
Many engineers have been working to reduce brake noise in many ways for a long time. So far, a progress has been made in preventing and predicting brake noise. Nevertheless, there are some discrepancies of brake noise generation propensity between testing for the prototype and the production. As known in general, the reason for this unpredicted brake noise occurrence in production is partly due to the variation of the resonant frequency, material and the other unpredictable or unmanageable variations of the components in a brake system. In this paper, effects of chemical components and casting process of gray iron brake disc on its resonant frequency variation have been studied. Especially this paper is focused on the variation in material aspects and manufacturing parameters during disc casting in usual production condition. And their effects are investigated by the variation of out-of-plane modal resonant frequency.
Journal Article

Systematic Brake Development Process and Optimized Robust Design of Front Axle Kinematics in Order to Reduce Oscillation Sensitivity

2009-10-11
2009-01-3038
Brake judder is about oscillations excited by brake application, which are generated in the contact area between brake pad and brake disc and are transmitted by the elements of the suspension to body and steering system. The driver perceives these perturbations as brake pedal pulsations, steering wheel rotational and body vibrations. The evaluation of a suspension concerning brake judder often takes place for the first time in road tests, since established simulation processes with a high significance concerning ride comfort are missing. At such a late moment necessary modifications in the development process are only hardly possible and very expensive. For avoiding brake judder a systematic development process is needed for brake and suspension. Each one can separately be improved in measurably borders so that their assembly is free of cold brake judder. The present paper shows appropriate test and simulation methods to achieve this.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Fast Characterization of Brake Squeal Behavior

2009-10-11
2009-01-3006
The last decades have shown extensive efforts on the investigation of automotive disk brake squeal. The origin of brake squeal is seen in self-excited vibrations, caused by the friction forces transferring energy from the rotating disk into the brake system. Based on a very simple model, Popp et al. described in 2002 the conditions for positive work of the friction forces (i.e. excitation of squeal), which depends on the phase shift between the in-plane motion (with respect to the disk) of the brake pad and the friction forces. Experiments on active manipulation of this phase shift using pads with integrated piezoceramic actuators, performed by von Wagner et al. in 2004, resulted in successful suppression of disk brake squeal. The authors of the present paper used a variety of models for the investigation of the origin of the excitation mechanism by observing phase relations between the friction forces and the vibrations of the pads.
Journal Article

The Influence of Vibration on Friction

2009-10-11
2009-01-3015
This paper summarizes results from the author's work on friction in dry sliding contacts in the presence of vibration. A number of idealized models of smooth and rough contacts are examined. It is shown that vibration can cause up to a 10% reduction in average friction even with continuous contact. A larger reduction in friction occurs when there is intermittent contact loss. This is found to be true for both elastic and plastic contacts, and for adhesive and plowing mechanisms of friction. The results of this work are compared and validated with measurements from experiments. The results presented are fundamental, but applicable to machine components with contacts including brake systems.
Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Journal Article

A Thermodynamic Evaluation of the Use of Alcohol Fuels in a Spark-Ignition Engine

2009-11-02
2009-01-2621
Although the use of alcohol fuels in spark-ignition engines has been investigated for over 100 years, consistent and thorough thermodynamic evaluations are few. The current work examines the detail thermodynamics of the use of methanol and ethanol by an automotive, spark-ignition engine. Overall engine performance parameters, detail instantaneous quantities, and second law parameters are determined as functions of engine design and operating conditions. In addition, the results for the alcohol fuels are compared to results for isooctane. Results include indicated and brake efficiencies, heat transfer, and exhaust gas temperatures as functions of engine speed and load. Operating conditions include constant equivalence ratio (stoichiometric), MBT spark timing, and constant burn duration. In general, the thermodynamic results are similar for the alcohol fuels and isooctane.
Journal Article

Gasoline Fuelled Partially Premixed Compression Ignition in a Light Duty Multi Cylinder Engine: A Study of Low Load and Low Speed Operation

2009-06-15
2009-01-1791
The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study.
X