Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effect of Machining–Induced Micro Texture on Lightning Current Arcing between Fasteners and Composite Structure

2009-11-10
2009-01-3240
Drilling fastener holes in composite is much more difficult than in aluminum or other metallic materials since individual carbon fibers fracture at irregular angles resulting in numerous microscopic voids. These voids can trap excess sealant inhibiting the intimate electrical contact between the fastener and the composite structure. As the cutting tool wears there is an increase of surface chipping and an increase in the amount of uncut fibers or resin. This condition is referred to as machining–induced micro texture. Machining–induced micro texture has been shown to be associated with the presence of arcing between the fastener and the composite structure during lightning strike tests. Lightning protection of composite structure is more complex due to the intrinsic high resistance of carbon fibers and epoxy, the multi-layer construction and the anisotropic nature of the structure.
Journal Article

Modeling of Fastener Kitting Logistics for Boeing Wide Body Airplanes

2009-11-10
2009-01-3252
At Boeing’s commercial aircraft production in Everett Washington, the organization that supplies parts to the factory floor (known internally as Company 625) is revising their methods. A new process will deliver parts in kits that correspond to the installation plans used by the mechanics. Several alternative methods are under review. The authors used simulation methods to evaluate and compare these alternatives. This study focuses on the category of parts known as standard fasteners (‘standards’). Through direct observation, interviews with experts, as well as time and motion study, the process flow of the kitting operation was mapped A simulation model was created using the simulation software ARENA to examine two scenarios: the current kitting operation in the factory cribs and the proposed centralization of kitting operation in the Company 625.
Journal Article

Development of Flax Fiber/Soy-Based Polyurethane Composites for Mass Transit Flooring Application

2010-04-12
2010-01-0428
In this study, soy-based polyurethane foam was reinforced with randomly oriented flax fiber to create green composite paneling. This paneling can be used as replacement for plywood in mass transit flooring. To establish optimal material properties, the flax/foam composite's density was modified through manipulation of both fiber volume fraction and foam void content in order to determine processing modification upon mechanical performance. Both static flexural testing and dynamic low velocity impact were performed. Mechanical characterization was performed by both flexural testing and screw fastener pullout studies. Resultant properties demonstrate the feasibility of lower maintenance renewable composite materials as replacement for current transit flooring.
Journal Article

Simulation of the Dynamical Behavior of Elastic Multi-Body Systems with Bolted, Rough Contact Interfaces

2010-06-09
2010-01-1422
For many technical applications it is necessary to avoid or to reduce vibrations. Factors benefiting from vibration reduction are for example the durability of the application, which is increased, as well as cost expenses and the level of noise, which are both decreased. Rough, bolted interfaces are common in most machines and can be used as damping devices with some effort. Perhaps in future such contact surfaces could be used as damping devices at the interfaces of an automotive engine or exhaust system. Nevertheless it is difficult to predict the effect of a change in contact interface parameters on the dynamic behavior of the entire mechanical system. Therefore a method for calculating the steady state behavior of elastic multi-body systems was developed. The basis of this method is a finite element model of each contacting unit. On each model a modal reduction is applied in order to reduce the degrees of freedom.
Journal Article

Fabrication of Titanium Aerospace Hardware using Elevated Temperature Forming Processes

2010-09-28
2010-01-1834
Titanium is a difficult material to fabricate into complex configurations. There is several elevated temperature forming processes available to produce titanium components for aerospace applications. The processes to be discussed are Superplastic Forming (SPF), hot forming and creep forming. SPF uses a tool that contains the required configuration and seals around the periphery so inert gas pressure can be used to form the material. Of the processes to be discussed, this is the one that can produce the most complex shapes containing the tightest radii. A variation of the process combines an SPF operation with diffusion bonding (SPF/DB) of two or more pieces of titanium together to produce integrally stiffened structure containing very few fasteners. Another process for shaping titanium is hot forming. In this process, matched metal tools, offset by the thickness of the starting material, are used to form the part contour at elevated temperature.
Journal Article

Dry Drilling of Stackup Composite: Benefits of CO2 Cooling

2014-09-16
2014-01-2234
The use of composite materials and composite stackups (CO-Ti or CO-Al) in aerospace and automotive applications has been and will continue to grow at a very high rate due to the high strength and low weight of the materials. One key problem manufacturers have using this material is the ability to efficiently drill holes through the layers to install fasteners and other components. This is especially true in stackups of CFRP and titanium due to the desire of drilling dry for the CFRP layer and the need for cooling when drilling the high strength Ti layer. By using CO2 through tool cooling, it is possible to protect both layers. Through work supported by the National Science Foundation (NSF) and Department of Energy (DOE) it is shown that CO2 through tool cooling productivity can be significantly increased while maintaining required hole tolerances in both the composite and Ti layers. Improvements in tool life have been demonstrated when compared to either emulsion or dry drilling.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Journal Article

Advances in Automated Inspection Using Contactless Head Height and Countersink Measurement Techniques

2013-09-17
2013-01-2148
For decades optical camera systems have been used by Broetje-Automation to locate pilot holes and find product orientation on NC-controlled positioner systems. Measurement tolerance requirements were and are in the range of +/− 0.2 mm. Recent developments enhance the sensor technology function from pure hole detection to new features like Fastener Head Height Measurement and Countersink Diameter Measurement. While head height measurement has to go 3D by enhancing the planar sensors to head protrusion measurement, the Countersink measuring tolerances are much smaller than “simple” hole detection, in fact require more than a magnitude tighter tolerances. This paper will present how Broetje-Automation solved the issue of a 20 plus fold accuracy increase, the 3D capability of the one eyed camera and all accompanied by a more robust evaluation software.
Journal Article

Rivet and Bolt Injector with Bomb Bay Ejection Doors

2013-09-17
2013-01-2151
Electroimpact's newest riveting machine features a track-style injector with Bomb Bay Ejection Doors. The Bomb Bay Ejection Doors are a robust way to eject fasteners from track style injector. Track style injectors are commonly used by Electroimpact and others in the industry. Using the Bomb Bay Doors for fastener ejection consists of opening the tracks allowing very solid clearing of an injector when ejecting a fastener translating to a more reliable fastener delivery system. Examples of when fastener ejection is needed are when a fastener is sent backwards, when there are two in the tube, or when a machine operator stops or resets the machine during a fastening cycle. This method allows fasteners to be cleared in nearly every situation when ejecting a fastener is required. Additional feature of Electroimpact's new injection system is integrated anvil tool change.
Journal Article

A Non-Destructive Method to Classify the Correct Installation of Blind Bolts

2013-09-17
2013-01-2184
Aerospace manufacturing requires efficient manufacturing processes. Composite materials are extensively used and manufacturing processes must evolve to overcome composite constraints for manufacturing and joining. Bolting is an extended joining process for composite materials in which a deformable blind bolt is stressed until joining forces are high enough to cause bolt breakage and ensure sufficient compression forces in the joint. Among bolting methods, blind bolting is an efficient composite joining method that enables the construction of aerospace composite structures accessing joints from a single side of the joint (front side), thus allowing for constructing closed structures where accessing the back side (blind side) is not possible. However, not being able to access the deformed head at the blind side prevents to perform a quality control and ensure a proper bolt deformation and a proper installation.
Journal Article

Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca

2010-04-12
2010-01-0404
Understanding the creep and bolt load retention (BLR) behavior of promising Mg-Al alloys are crucial to developing elevated temperature resistance alloys. This is especially true for elevated temperature automotive applications with a prevalence of bolted joints. In this study, creep and fastener clamp load response of Mg-Al alloy AS41 was investigated and compared to that of Mg4Al and AS41 micro-alloyed with 0.15 % Ca. A compliance-creep approach was used to model the response of these Mg-Al alloys at bolted joints. The equation prediction of the BLR response and experimental results are in good agreement. AS41+0.15 Ca shows improved creep and BLR properties up to 175°C. A correlation between the microstructures, creep and BLR results reveal that the formation of a ternary CaMgSi phase is responsible for the improved elevated temperature behavior.
Journal Article

Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach

2014-10-13
2014-01-2882
The present paper describes a CAE analysis approach to evaluate the design of exhaust manifold of a turbo charged gasoline engine. It allows design engineers to identify structural weakness at the early stage or to find the root cause of exhaust manifold failures. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the exhaust manifold assembly during thermal shock cycles, which include rated speed full load, rated speed motored and idle speed conditions. A transient heat transfer simulation is performed to provide thermal boundary conditions for the nonlinear stress/strain analysis. The finite element model includes a part of cylinder head, exhaust manifold, gaskets, turbo charger housing, catalytic converter, brackets, bolts and nuts. The results show that plastic deformation is the main cause of manifold cracking and the manifold flange distortion causes the exhaust leakage.
Technical Paper

Impact of Mode Shapes on Experimental Loss Factor Estimation in Automotive Joints

2021-08-31
2021-01-1110
This paper presents the experimental work carried out on single-lap joints fastened together with bolts and nuts to investigate the contribution of mode shapes, and the effect that bolt sizes has in dissipating energy in built-up structures. Five different bolt sizes are chosen to assemble five single-bolted single-lap joints using aluminum plates. An analogous monolithic solid piece carved from the same aluminum material is used to determine the material damping and compare it against the damping from bolted joints. The dynamic response of all structures is captured under free-free boundary conditions, and the common modes are analyzed to understand the contribution and primary source of damping in the same range of the sampling frequency.
Technical Paper

Bolted Joints - Still a Key Part of Efficient Powertrains and a Challenge for Simulation

2020-09-15
2020-01-2221
The bolt is one of the most standardized and most commonly used machine elements. On the other hand, since the mechanics of highly stressed bolted joints and the thread fatigue are complex issues, the design and evaluation of such joints is frequently carried out with major simplifications and assumptions, leading to either over-engineered solutions or to premature failures of the prototypes. The simulation techniques and the computing power that are now available theoretically allow a precise evaluation of the fatigue safety in the most heavily loaded areas through the application of very fine FE models of the thread regions. However, due to the modeling and calculation effort, this is still only acceptable in practice for structures with a limited number of bolts.
Technical Paper

Validity Assessment and Calibration Approach for Simulation Models of Energy Efficiency of Light-Duty Vehicles

2020-04-14
2020-01-1441
Software tools for simulations of vehicle fuel economy/energy efficiency play an important role strategic decision-making in advanced powertrains. In general, there is a trade-off between the level of detail in a numerical model of a vehicle (higher detail provides better simulation accuracy), and the computational time resources to run the model. However, even with detailed models of a vehicle, there remains some uncertainty about how the vehicle performs in the real-world. Calibration of simulation models versus real-world data is a challenging task due to variations in vehicle usage by different owners. This work utilizes datasets of real-world driving in vehicles that have been equipped with OBD/GPS loggers. The loggers record at fairly high frequency the vehicle speed, road slope, cabin heating/air-conditioning loads, as well as energy/fuel consumption.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

Cracking Stopping in the Bondline of Adhesively Bonded Composite Adherents by Means of a Mechanical Fastener: Numerical and Experimental Investigation

2015-09-15
2015-01-2611
The use of composite materials in aircraft manufactures increases more and more with the need of light weight and efficient airplanes. Combining composite materials with an appropriate joining method is one of the primordial ways of exploiting its light weight potential. Since the widely-established mechanical fastening, which originally, was developed for metallic materials, is not a suitable joining method for composite materials because of its low bearing strength, the adhesively bonding technology might be an appropriate alternative. However, adhesively bonding in the aircraft manufacturing, especially for joining of primary structures is liable to certification requirements, such as testing of every bond up to limit load before the operation begins or non-destructive testing of every bond before the operation begins as proof of the joint characteristics, which cannot be fulfilled with the current state of the art.
Journal Article

Development of Original Self-Oscillating Washer Nozzle

2015-04-14
2015-01-1377
As an integral element of automotive wiper systems, an automotive washer system is designed to contribute to the security and safety of automobile-based societies by providing drivers with a clear field of vision. Washer fluid is discharged from washer nozzles, typically mounted on the engine hood, to distances of more than 300 mm across the windshield. However, the fluid discharged may fail to reach targeted areas due to the effects of wind pressure when the vehicle is moving at high speed or due to the increased viscosity of methanol in the washer fluid (at concentrations of 30-60 %) at low temperatures, resulting in failure to ensure a clear field of vision. We developed a self-oscillating washer nozzle to remedy these shortcomings of conventional washer systems. Based on CFD and optimization, the flow passage is designed to generate a stable discharge of washer fluid, even under conditions of high-speed air flow or low temperature.
Journal Article

Compression Behavior of DIN C10C and SAE-AISI 1010 Steels During Riveting of Clutch Disc Spacer Bolts: Experimental and Computational Analysis

2017-03-28
2017-01-0225
The rapid growth of the emerging markets has pushed the automotive original equipment manufacturers to relocalize production to reduce manufacturing and logistic costs. To ensure an efficient and flexible supply chain, local suppliers are appointed. However, the characteristics of materials available in each region may have minor differences, and when geometry and process design recommendations that were developed for certain materials are implemented for materials under a different regional standard, different results are obtained. Such is the case of the clutch disc spacer bolt, in which its compression during riveting has a direct effect in the noise and vibration isolation of the vehicle. It has been reported that spacer bolts produced with materials considered to be equivalent in Europe and North America (DIN C10C and SAE-AISI 1010 steels) behave different during riveting, even though they have very similar chemical compositions and are delivered with a similar UTS and ductility.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
X