Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Electrochromic Glazings for Use in Automobiles

1996-04-01
91A110
In the present paper we will outline the principles, designs, problems and benefits of electrochromic coatings and present our own laboratory results. The effect of electrochromic coatings on the thermal comfort of a parked vehicle is theoretically calculated and the results confronted with the performances of selective coatings.
Technical Paper

Multifunctional Glasses for Automotive

1996-04-01
91A109
The windows of a vehicle have to satisfy the following driver and passenger needs concerning visibility and climate perception both related to active safety: transparency, reluctance, dazzling, glare and diffused light (scattering). All functions are related to visibility and so to the optics of glazing, solar control, deicing, defogging, demisting. The task of material science is to find the multifunctional glasses solving simultaneously problems of visibility, safety and comfort. Particular kind of glasses, colored, wired, coated, electrochromic, liquid crystal, photochromic can be already considered solutions which can operate passively or actively. The example of passive solar control and active heatable coated glasses is shown as a possible practical multifunctional glass very soon.
Technical Paper

Improving the Ride & Handling Qualities of a Passenger Car via Modification of its Rear Suspension Mechanism

2000-05-01
2000-01-1630
This paper presents the results of a recent project of IKCo’s research center to modify the Paykan 1600’s rear suspension mechanism with the purpose of improving the car’s comfort, stability and handling qualities. The car was originally equipped with a solid rear axle with leaf springs. By replacing the original mechanism with a three-link mechanism with panhard bar and coil springs, the ride comfort and handling characteristics of the car were noticeably improved.3-D, nonlinear ride and handling models were developed and analyzed to determine the important kinematics and dynamic effects of the new mechanism on vehicle responses. To verify the analytical results, subjective tests were carried out on the vehicle. The results of these tests demonstrated remarkable improvement of the dynamics behavior of the car.
Technical Paper

A Simple and Efficient Description of Car Body Movements for Use in Virtual Prototyping and Ride Comfort Evaluation

2000-05-01
2000-01-1629
Ideally, ride comfort evaluation, or any field evaluating human perception of motion, would be greatly simplified if such evaluation could be made based upon a single number or a simple curve that correlates with the perception of motion. The paper describes a ride comfort descriptor of pitch movements that is simple to use in virtual prototyping and ride comfort evaluations. This descriptor, i.e. Pitch Indicator, is validated in a calculation model, ride comfort measurements and subjective evaluations.
Technical Paper

Motorcycle Suspension Development Using Ride Comfort Analysis with a Laboratory Test System

1999-09-28
1999-01-3276
An analytical approach to developing motorcycle suspensions is presented. Typical uncontrolled and subjective evaluations that place limits on suspension development are curtailed through the use of a laboratory-based road simulation technique, which evaluates vehicle ride quality. Ride comfort is calculated using a specifically tailored NASA model after primary and secondary frequency regimes have been established for this type of motorcycle. Correlation between road and laboratory simulation is measured and compared to the road data variance. A designed experiment evaluates changes in ride quality as a function of suspension and tire pressure adjustments. Various suspension settings are repeated on the simulator and corresponding ride numbers are calculated for both environments. An analysis is performed to correlate ride quality improvements on the simulator with ride quality improvements in the field.
Technical Paper

Investigation of Wheeled Tractors Ride Comfort Using Hydraulic Semi-Active Suspension System

1999-11-15
1999-01-3727
In this paper, an electronically controlled hydraulic semiactive system for the seat suspension of wheeled tractors is theoretically designed to improve the driver ride comfort. Using a three degrees of freedom mathematical model, the damping force controller is designed based on optimal control theory and Nelder / Mead Simplex minimization method to perform a limited state feedback information. The controller considers the damping constraint which adapts the actual damping between the prescribed limits. The model results are generated when excited by a statistically random road profile. The results are presented in time and frequency domains. The driver vertical acceleration for semi-active and conventional passive systems are compared at similar root mean square (r.m.s) value of suspension working space. The semiactive system achieved a significant improvement, 18 percent, over the passive system with no power requirement from the tractor engine.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Designing Mobile Air–conditioning Systems to Provide Occupant Comfort

2000-03-06
2000-01-1273
The designer of mobile air–conditioning systems must consider the total vehicle in order to provide occupant comfort. An effective refrigerant circuit is only one portion of the vehicle “Comfort System” and without the system's ability to deliver adequate cooling it will not meet the consumer's expectations. A significant considered is the design of the vehicle's body, including the panel outlets and the extent of window glazing surfaces. The location of the panel outlets to provide the occupant's adequate and controllable system airflow for changing weather conditions is a major factor in achieving comfort. Window glazing locations and areas have a major effect on increasing the air–conditioning thermal load by allowing direct solar radiation into the vehicle. Unfortunately, the styling of the vehicle dictates these areas and these constraints very often result in the customer having an air–conditioning system that provides an unsatisfactory level of performance.
Technical Paper

Numerical Study of the Influence of Air Vent Area and Air Mass Flux on the Thermal Comfort of Car Occupants

2000-03-06
2000-01-0980
In the present paper, first results of an extensive and ongoing parametric study are shown. The objective of the parametric study is to clarify the influence of relevant flow and geometrical parameters on the microclimate and thermal comfort of the occupants. Flow parameters included in the study are air mass fluxes, velocity magnitude, air temperature and inflow direction at the vents. Geometrical parameters of interest are number, location, area and shape of the air vents as well as geometrical details of the passenger compartment itself. The parametric study is performed numerically on the basis of a computational model for a passenger compartment of a Mercedes E-Class sedan. The numerical method used has been published earlier and consists of a system of three programs for simulating the flow and temperature field in the cabin, the heat transfer and radiation and the thermal sensation of the occupants.
Technical Paper

Air Diffusion Concept for Climate Comfort Improvement

2000-03-06
2000-01-0979
Current systems of air diffusion inside the car cabin are leading in some conditions to passenger discomfort. To solve this problem our company has developed a new concept of air diffusion. It consists in an air distribution system composed of a wide central air diffusion area on the top of the instrument panel and two lateral outlets. To evaluate the comfort performances of the concept a methodology based on experiments, simulation and subjective evaluation has been defined and used. The comparison between the current air diffusion and the new one shows a significant impact on the driver's and passenger's comfort. The purpose of this paper is to describe the methodology developed to analyze the air diffusion impact on the comfort and the improvements obtained by the new concept.
Technical Paper

Vehicle Defroster System Evaluation

2000-03-06
2000-01-0984
Vehicle defrost systems are required to defrost the windshield and side windows in a short period. This portion of the HVAC system is not only required to work without interfering with operator comfort relating to high temperatures being felt by the drivers face, but also relating to noise. Add to these restrictions the requirement that the defrost outlets used must be esthetically pleasing, and one can see how much development time is required to design an effective defrost system. Once a design is established, it must be tested. The methods currently used to test defrost performance leaves much to be desired, due to the time required to transpose actual test results into usable data. This transposition includes removing marked tracing from the windows in a cold chamber to trace paper, and then the trace paper needs to be reduced into manageable sizes of paper.
Technical Paper

That's One Small Step for Man: Cultural and Physiological Cross-benefits Between Gravity and Reduced Gravity Environments

2000-07-10
2000-01-2462
Over ten thousand years of chair use on Earth have evolved primarily for reasons of status rather than comfort. The radically different physiological context of prolonged occupation of reduced gravity environments in outer space has provided a new opportunity to think outside the cultural box back on Earth. This paper explores possible alternatives to the chair for a range of activities including working, learning, and resting in gravity. Conversely, it suggests that what we have learned on Earth from body-mind disciplines, especially the Alexander Technique, might enhance performance in reduced gravity.
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

Digital Occupant: Personal Immersion for Subjective Evaluations of a Vehicle

2000-06-06
2000-01-2154
Ford’s use of digital mockups in vehicle design has improved the package and fit of components and systems within the vehicle. However, to fully meet and exceed the consumer’s expectations of a vehicle it is crucial to make subjective evaluations of a vehicle’s comfort, convenience, visibility, and accessibility early in the design process. Efficient and nimble design requires an understanding of the subjective qualities of the vehicle before any physical prototypes exist. The Digital Occupant personally immerses an individual (e.g. member of the design team, market researcher or consumer) within the digital mockup earlier to facilitate these subjective evaluations. This paper describes the technologies and emerging methodologies integrated to produce the Digital Occupant. This personally immersive simulation includes a full body real-time dynamic digital representation of the individual being immersed.
Technical Paper

Influence of Forces on Comfort Feeling in Vehicles

2000-06-06
2000-01-2171
When investigating the posture comfort in vehicles two important influencing factors can be distinguished: In order to evaluate these influences a combined laboratory-field-experiment was carried out. A real car was equipped with cameras to record the body posture and the joint angles. The static forces exerted by the driver on his contact points were recorded in a corresponding mock-up. The forces to maintain the body posture were calculated. The following results were found:
Technical Paper

Maximal Conductive Heat Exchange through Different Body Zones in a Liquid Cooling/Warming Space Garment

2000-07-10
2000-01-2255
The maximal capability of several body areas to absorb/release heat by varying the circulating water temperature in different zones of a multi-compartment liquid cooling/warming garment (LCWG) was explored. The goal was to identify the areas that are highly effective to stabilize body comfort, and to use this information for developing a more physiologically-based design of the space suit. The results showed a high capability of the upper compared to the lower body in the conductive heat exchange process. The involvement of the head in this process is still problematic, because there was not a high level of direct heat absorption/release through the cooling/warming hood in the LCWG. Exclusion of the legs but with involvement of the feet in heat exchange had no effect on comfort of the distal parts of the extremities and core body status.
Technical Paper

Development of and Research into the Ergometric Evaluation method for Space Suit Glove

2000-07-10
2000-01-2258
Experimental evaluation is very important for space suit (SS) gloves design development. There are several ways to evaluate the SS gloves. One of the main ways is the method of expert (qualitative) and subjective evaluation which is used by an operator to evaluate mobility level, comfort, etc. using the glove box or space suit. The following methods of glove performance quantitative evaluation are also used: grasp/pinch force measurement, tactile feedback tests, dexterity determination during various types of work etc. The Zvezda's specialists proposed and researched an effective ergometric method in addition to the SS glove qualitative evaluation and instead of most methods for glove performance quantitative evaluation. This method makes it possible to evaluate objectively various characteristics of the gloves using quantitative determination of work performed by the gloved operator.
Technical Paper

Evaluation of Anthropometric Requirements for the Design of an Ergometer Restraint System

2001-07-09
2001-01-2186
NTE is developing a system for neuromuscular research (MARES: Muscular Atrophy Research and Exercise System). This system is an ergometer to be flown and installed in the International Space Station in the year 2004 and is consisting of a motor, an HRS (Human Restraint System) and a control electronics that controls the motor. The subject is connected to the motor by means of the restraining system HRS. This ergometer can be used for 11 movements (wrist flexion/extension, pronation/supination and radial/ulnar deviation, trunk flexion/extension, arm pull/press, leg pull/press, elbow flexion/extension, Shoulder flexion/extension, hip flexion/extension, knee flexion/extension and ankle dorsal/plantar flexion). MARES is a research tool for physiologists, but also interesting for human factors people. It is a tool to quantitatively measure the physical condition of a person before performing a physically demanding task (e.g.
Technical Paper

Ergonomic Evaluation of an Aircraft Cockpit with RAMSIS 3D Human Modeling Software

2001-06-26
2001-01-2115
The 3D digital human model RAMSIS, which is primarily used in the automotive industry, has been used to predict probable pilot behavior in a proposed cockpit design for the Eclipse 500 jet. The results were used to detect potential accommodation problems as early as possible, as well as to establish guidelines and requirements for further design of the cockpit and interior components. Defining interactions between a digital human model and a CAD environment, such that it reflects interaction between real pilots and cockpits as realistically as possible, is often an arbitrary process. Nevertheless, 3D human models prove to be powerful design tools for aircraft cockpit designers to ensure functional and comfortable accommodation of the target pilot population.
X