Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Odors in Space Environments - Sources and Control Strategies

2007-07-09
2007-01-3269
Management of human feces and wastes is a major challenge in space vehicles due to the potential biohazards and malodorous compounds emanating during collection and storage of feces and wastes. To facilitate safe, yet realistic human waste management research, we have previously developed human fecal simulants for research activities. The odoriferous compounds in feces and wastes reduce the quality of life for astronauts, can reduce performance, and can even cause health problems. The major odoriferous compounds of concern belong to four groups of chemicals, volatile fatty acids, volatile sulfurous compounds, nitrogenous compounds and phenols. This paper attempts to review the problem of odor detection and odor control with advanced technology. There has been considerable progress in odor detection and control in the animal industry and in the dental profession.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Investigations into Water Recovery from Solid Wastes using a Microwave Solid Waste Stabilization and Water Recovery System

2009-07-12
2009-01-2341
A microwave powered solid waste stabilization and water recovery prototype was delivered to Ames Research Center through an SBIR Phase II contract awarded to Umpqua Research Company. The system uses a container capable of holding 5.7 dm3 volume of waste. The microwave power can be varied to operate either at full power (130 W) or in a variable mode from 0% and 100%. Experiments were conducted with different types of wastes (wet cloth, simulated feces/diarrheal wastes, wet trash and brine) at different levels of moisture content and dried under varying microwave power supply. This paper presents the experimental data. The results provide valuable insight into the different operation modes under which the prototype can be used to recover water from the wastes in a space environment. Further investigations and testing of the prototype are recommended.
Technical Paper

Investigating the Partitioning of Inorganic Elements Consumed by Humans between the Various Fractions of Human Wastes - An Alternative Approach

2003-07-07
2003-01-2371
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes.
Technical Paper

Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

2003-07-07
2003-01-2368
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube’s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube’s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT’s.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup - System Testing

2002-07-15
2002-01-2401
NASA Ames Research Center and Lawrence Berkeley National lab have completed a three-year joint NRA research project on the use of waste biomass to make a gaseous contaminant removal system. The objective of the research was to produce activated carbon from life support wastes and to use the activated carbon to adsorb and remove incineration flue gas contaminants such as NOx. Inedible biomass waste from food production was the primary waste considered for conversion to activated carbon. Previous research at NASA Ames has demonstrated the adsorption of both NOx and SO2 on activated carbon made from biomass and the subsequent conversion of adsorbed NOx to nitrogen and SO2 to sulfur. This paper presents the results testing the whole process system consisting of making, using, and regenerating activated carbon with relevant feed from an actual incinerator. Factors regarding carbon preparation, adsorption and regeneration are addressed.
Technical Paper

Simulated Human Feces for Testing Human Waste Processing Technologies in Space Systems

2006-07-17
2006-01-2180
Handling and processing human feces in space habitats is a major concern and needs to be addressed for the Crew Exploration Vehicle (CEV) as well as for future exploration activities. In order to ensure crew health and safety, feces should either be isolated in a dried form to prevent microbial activity, or be processed to yield a non-biohazardous product using a reliable technology. During laboratory testing of new feces processing technologies, use of “real” feces can impede progress due to practical issues such as safety and handling thereby limiting experimental investigations. The availability of a non-hazardous simulant or analogue of feces can overcome this limitation. Use of a simulant can speed up research and ensure a safe laboratory environment. At Ames Research Center, we have undertaken the task of developing human fecal simulants. In field investigations, human feces show wide variations in their chemical/physical composition.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

A Prototype Pyrolysis / Oxidation System for Solid Waste Processing

2005-07-11
2005-01-3083
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid liquid and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process, which is insensitivity to product mix, no O2 consumption, and batch processing, in the case of pyrolysis, and simplicity of the product effluent stream in the case of oxidation. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (ESM) and system complexity.
Technical Paper

Control of Effluent Gases from Solid Waste Processing Using Impregnated Carbon Nanotubes

2005-07-11
2005-01-2946
One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored.
Technical Paper

Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

2004-07-19
2004-01-2492
The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability of the nanotubes to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and their effectiveness as catalyst supports for gaseous conversion. A metal impregnated SWNT material has been proposed and synthesized for removing and converting the toxins in the life support system.
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
Technical Paper

A Hybrid Pyrolysis / Oxidation System for Solid Waste Resource Recovery

2004-07-19
2004-01-2380
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid, and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process. The advantages of pyrolysis are: insensitivity to feedstock composition, no oxygen consumption, and batch operation. The main advantage of oxidation is the simplicity and consistency of the product stream. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (estimated at 10-40%) and system complexity.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Journal Article

Waste Management Technology and the Drivers for Space Missions

2008-06-29
2008-01-2047
Since the mid 1980s, NASA has developed advanced waste management technologies that collect and process waste. These technologies include incineration, hydrothermal oxidation, pyrolysis, electrochemical oxidation, activated carbon production, brine dewatering, slurry bioreactor oxidation, composting, NOx control, compaction, and waste collection. Some of these technologies recover resources such as water, oxygen, nitrogen, carbon dioxide, carbon, fuels, and nutrients. Other technologies such as the Waste Collection System (WCS - the commode) collect waste for storage or processing. The need for waste processing varies greatly depending upon the mission scenario. This paper reviews the waste management technology development activities conducted by NASA since the mid 1980s and explores the drivers that determine the application of these technologies to future missions.
X