Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Advanced Finite Element Analysis of a Lightweight Nanometal-Polymer Hybrid Component with Experimental Validation, and Its Applications to Vehicle Lightweighting

2018-04-03
2018-01-0152
The presence of engineering plastics in the automotive, aerospace, and defense industries is rapidly increasing; the lightweight and cost-effective nature of these materials, coupled with improvements to their mechanical performance, is driving the replacement of more traditional materials. However, the stiffness of engineering plastics cannot rival that of their metal counterparts, making metal replacement challenging in cases where stiffness is paramount. Nanometal-polymer hybrids, which are engineering plastics reinforced by a thin high-strength metal coating, provide an innovative solution to this problem. However, implementing this hybrid material into innovative designs remains a challenge, as relatively little information about mechanical behaviour or appropriate modeling techniques for this complex material are available. In this article, an efficient and effective finite element modeling approach for the structural analysis of nanometal-polymer hybrids is presented.
Technical Paper

Control Arm Design Utilizing Multi-Material Topology Optimization

2021-04-06
2021-01-0826
With the rising cost of fuels in addition to stricter emission standards, modern vehicles ought to be more fuel efficient. The best approach to increase fuel efficiency is to reduce the mass of vehicles. In order to produce light weight components for vehicles, topology optimization (TO) is now widely used by designers. However, the raw results obtained from TO cannot be manufactured directly and require significant reinterpretation to be able to be manufactured using traditional manufacturing processes. By considering the manufacturing process outside of TO, a sub-optimal design is obtained. The consideration of process specific manufacturing constraints within the TO ensures that a more optimal design will be produced. Previously the complex designs produced by TO have been a barrier to its implementation as the components cannot be produced without excessive costs. By coupling manufacturing constraints with TO more optimal designs can be obtained.
Technical Paper

Simultaneous Free-Size, Gauge, and Composite Optimization for Automotive Chassis Design

2022-03-29
2022-01-0792
Rising gas prices and increasingly stringent vehicle emissions standards have pushed automakers to increase fuel economy. Mass reduction is the most practical method to increase fuel economy of a vehicle. New materials and CAE technology allow for lightweight automotive components to be designed and manufactured, which outperform traditional component designs. Topology optimization and other design optimization techniques are widely used by designers to create lightweight structural automotive parts. Other design optimization techniques include free-size, gauge, and size optimization. These optimization techniques are typically used in sequence or independently during the design process. Performing various types of design optimization simultaneously is only practical in certain cases, where different parts of the structure have different manufacturing constraints.
Technical Paper

Exploring New Joining Techniques of CFRP Cross Member Chassis

2022-03-29
2022-01-0337
Increasing fuel prices and escalating emissions standards, are leading car manufacturers to develop vehicles with higher fuel efficiency. Reducing the mass of the vehicle is one technique to improve fuel efficiency. Shifting from metals to composite materials is a promising approach for great reductions to the vehicle mass. As more composite parts are introduced into vehicles, the approach to joining components is changing and requiring more investigation. Metallic chassis components are traditionally joined with mechanical fasteners, while composites are generally joined with adhesives. In a collaboration between Queen’s University and KCarbon, an automotive composite crossmember is being developed. A variety of lap joint geometries were modeled into a the crossmember assembly for composite-composite joints. Finite element-based optimization methods were applied to reduce mass of the crossmember. The optimized masses showed a 5% difference between the three joint geometries analyzed
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

Multi-Material Topology Optimization as a Concept Generation and Design Tool

2019-04-02
2019-01-1095
Conventional vehicle design is continually being pushed by consumers and regulations to reach higher level of fuel efficiency and system performance. New methods such as use of alternative structural materials and structural optimization are being utilized heavily in the automotive industry. Currently, materials such as advanced composites, polymers, aluminum and magnesium are all being considered as candidates for alternatives to conventional steel parts to help meet lightweight performance targets. While topology optimization has proven to be a powerful in many case studies for automotive light weighting studies, it is currently constrained for use with one material in the optimization algorithm. Multi-material topology optimization (MMTO) methods presented in this paper demonstrate the tools capability to optimize material selection simultaneously alongside material layout for a given design space and desired weight target.
Technical Paper

Modified Multi-material Topology Optimization Considering Isotropic and Anisotropic Materials Mixture

2021-04-06
2021-01-0265
This paper describes the element interpolation scheme for multi-material topology optimization (MMTO), which generalizes the existing standard MMTO approach to overcome the inherent limitations of using only isotropic materials with a constant Poisson’s ratio. To address this limitation, the proposed method transforms the MMTO solution in a series of single material topology optimization (SMTO) by stacking multiple elements within the same design cell and assigning each weighted candidate material to an element. Solid Isotropic Material with Penalization (SIMP) equations are defined as weighting factors applied on each candidate material. As a result, anisotropic or isotropic materials with different Poisson’s ratios can be implemented in MMTO, allowing engineers to determine optimized designs that explore the full potential of isotropic and anisotropic materials properties.
Technical Paper

Additive Manufacturing Experimental Infill Testing and Optimization for Automotive Lightweighting

2019-04-02
2019-01-1275
Lightweighting of vehicles in the automotive industry is one of the most prevalent trends currently underway; influenced by government regulation and consumer demand. The reduction in vehicle mass of the next generation automobile offers increased dynamic performance, reduced fuel consumption, and potential component cost reduction. Development in composite materials, numerical methods, part consolidation, and advanced high strength metals represent a selection of the strategies being utilized for lightweighting. Additive manufacturing (AM) is a family of rapidly developing technology that is seeing use in the automotive industry both in the development and production stages. Fused deposition modelling (FDM) printed parts offer designers increased freedom, at a reduced weight, in comparison to conventionally fabricated parts as internal sections that are hollow, sparsely filled, or composed of a lattice structure can be realized instead of the traditional solid infill matrix.
Technical Paper

Multi-Material Topology Optimization and Multi-Material Selection in Design

2019-04-02
2019-01-0843
As automakers continue to develop new lightweight vehicles, the application of multi-material parts, assemblies and systems is needed to enhance overall performance and safety of new and emerging architectures. To achieve these goals conventional material selection and design strategies may be employed, such as standard material performance indices or full-combinatorial substitution studies. While these detailed processes exist, they often succeed at only suggesting one material per component, and cannot consider a clean-slate design; here, multi-material topology optimization (MMTO) is suggested as an effective computational tool for performing large-scale combined multi-material selection and design. Unlike previous manual methods, MMTO provides an efficient method for simultaneously determining material existence and distribution within a predefined design domain from a library of material options.
Journal Article

Multi-Material Topology Optimization Considering Manufacturing Constraints

2020-04-14
2020-01-0628
The field of topology optimization (TO) has been evolving rapidly, notably due to the emergence of multi-material topology optimization (MMTO) algorithms. These developments follow the establishment of TO tools within industry, which has been accelerated and promoted through the introduction of various manufacturing constraints within algorithms. The integration of manufacturing constraints within MMTO is critical for promoting industry usage and adoption of these new software algorithms, as current usage of MMTO is dissuaded by the typically complex design solutions. The presented MMTO implementation is an extension of classical single-material topology optimization (SMTO). The TO problem is expanded to consider both material existence and selection, solid isotropic material with penalization (SIMP) is utilized for material interpolation.
Journal Article

Automotive Hood Panel Design Utilizing Anisotropic Multi-Material Topology Optimization

2021-04-06
2021-01-0361
Topology optimization (TO) represents an invaluable instrument for the structural design of components, with extensive use in numerous industries including automotive and aerospace. TO allows designers to generate lightweight, non-intuitive solutions that often improve overall system performance. Utilization of multiple materials within TO expands its range of applications, granting additional freedom and structural performance to designers. Often, use of multiple materials in TO results in material placement that may not have been previously identified as optimal, providing designers with the ability to produce novel high performance systems. As numerous modern engineering materials possess anisotropic properties, a logical extension of multi-material TO is to include provisions for anisotropic materials. Herein lies the focus of this work.
Journal Article

Motorcycle Chassis Design Utilizing Multi-Material Topology Optimization

2020-04-14
2020-01-0509
Evolving fuel efficiency and emissions standards, along with consumer demand for performance, are strong pressures for light-weighting of performance oriented motorcycles. The field of topology optimization (TO), with the extension of multi-material topology optimization (MMTO) provide manufacturers with advanced structural light-weighting methodology. TO methodology has been adopted in many industries, including automotive where light-weighting assists in meeting efficiency regulations. The development of process specific manufacturing constraints within MMTO is a critical step in increasing adoption within industries dealing with manufacturing cost restrictions. This capability can decrease design complexity, lowering manufacturing costs of optimization solutions. A conventional all-aluminum perimeter style motorcycle chassis is analyzed to develop baseline compliance (total strain energy) metrics.
Journal Article

Parts Consolidation of Automotive Front Crossmember: From Two-Piece CFRP Design to One-Piece Design

2022-03-29
2022-01-0342
As demand for fuel efficiency rises, an increasing number of automotive companies are replacing their existing metal designs with carbon-fiber-reinforced polymer (CFRP) redesigns. Due to the handling and manufacturing processes associated with CFRP materials, engineers have more design freedom to create complex, light-weight designs, which would be infeasible to manufacture using metal. Additionally, it is likely that by redesigning with CFRP, many steel assemblies can be consolidated to significantly fewer parts, simplifying or potentially eliminating the assembly process. When designing an automotive crossmember using CFRP materials, designers often aim for a two-piece design (top and bottom), while utilizing reinforcement material where needed. The joining of these two pieces is typically accomplished with many mechanical fasteners and adhesives, significantly increasing the part count and the manufacturing complexity.
Technical Paper

FRAM Optimization: 3D Print Orientation and Concurrent Topology Optimization for Minimize Mass Problem Statements

2024-04-09
2024-01-2577
Fiber reinforced additive manufacturing (FRAM) is a fused deposition modelling (FDM) additive manufacturing (AM) process which produces composite print layers - polymer matrix and reinforcing fiber. This work proposes a novel method which utilizes FRAM design freedom and simultaneously optimizes 3D print orientation and component topology to improve the response of a mass minimization problem statement. The method is robust and is designed to solve industry-applicable problem statements (mass minimization) with complex geometry and loading. Design sensitivities of 3D print orientation design variables, (θ1, θ2, θ3), are calculated using finite differencing and gradient descent is used to converge to an optimized print orientation. Changing 3D print orientation alters anisotropic material properties to improve the structural response of the component in the prescribed load-cases.
X