Refine Your Search

Topic

Search Results

Standard

FUEL TANK FILLING CONDITIONS

1969-06-01
HISTORICAL
J398_196906
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and fill pipes with fuel dispensing facilities. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks. It also includes a technique for filling a tank “full” that can be used to establish a reference condition for other tests which require starting with a “full” tank.
Standard

FUEL TANK FILLER CONDITIONS - PASSENGER CAR, MULTI-PURPOSE PASSENGER VEHICLES, AND LIGHT DUTY TRUCKS

1988-02-01
HISTORICAL
J398_198802
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multi-purpose passenger vehicles, and light-duty trucks (10 000 lb (4536 kg) maximum gvw), (Ref. J1100, Motor Vehicle Dimensions). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

FUEL TANK FILLER CONDITIONS—PASSENGER CAR MULTI-PURPOSE PASSENGER VEHICLES, AND LIGHT DUTY TRUCKS

1978-06-01
HISTORICAL
J398B_197806
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks (10 000 lb (4536 kg) maximum gvw), (Ref. J1100a, Motor Vehicle Dimensions (September, 1975)). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Rated (Advertised) Fuel Capacity—Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2005-03-24
HISTORICAL
J398_200503
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

FUEL TANK FILLER CONDITIONS—PASSENGER CAR, MULTIPURPOSE PASSENGER VEHICLES, AND LIGHT-DUTY TRUCKS

1995-07-01
HISTORICAL
J398_199507
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10 000 lb) maximum GVW (Ref. J1100). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives

2013-05-14
CURRENT
J1747_201305
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Standard

Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives

2007-07-20
HISTORICAL
J1747_200707
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2012-05-31
CURRENT
J2785_201205
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2006-11-06
HISTORICAL
J2785_200611
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

NONMETALLIC FUEL SYSTEM TUBING

1994-05-01
HISTORICAL
J2043_199405
This SAE Standard covers the minimum requirements for nonmetallic tubing as manufactured for use in gasoline or diesel fuel systems. It is not intended to cover tubing for any portion of the system which operates below -40 °C, above 115 °C, or above a maximum working gage pressure of 690 kPa.
Standard

Nonmetallic Fuel System Tubing

1996-11-01
CURRENT
J2043_199611
This SAE Standard covers the minimum requirements for nonmetallic tubing as manufactured for use in gasoline or diesel fuel systems. It is not intended to cover tubing for any portion of the system which operates below -40 degrees C, above 115 degrees C, or above a maximum working gage pressure of 690 kPa.
Standard

Passenger Car and Light Truck Fuel Containment

2002-03-26
CURRENT
J1664_200203
The scope of this SAE Information Report is the liquid fuel containment system for gasoline or flexible fuels (up to 85% methanol in gasoline), along with their associated vapors, as designed for use on passenger cars and light trucks. For purposes of this document, fuel containment addresses the fuel tank and components that are directly attached to the fuel tank. These components may include the filler neck, tank, fill vent tube, fuel cap, pump-sender, and rollover control valve closure seals, insofar as they act as closure or containment mechanisms. Emphasis will be on fuel containment and the required system closures. Furthermore, emphasis will be placed on design recommendations as they relate to performance. Mounting and shielding of the "system" components are only included to the extent they affect the containment aspects.
Standard

Requirements for Built-in Service Port for On-Board Diagnostics

2020-03-11
CURRENT
J2744_202003
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Requirements for Built-In Service Port for On Board Diagnostics

2008-08-11
HISTORICAL
J2744_200808
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Fuel Tank Filler, Capless Closure

2019-04-24
CURRENT
J3144_201904
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
Standard

Fuel Filler Pipe Assembly Design Practice to Meet Low Evaporative Emission Requirements

2012-08-14
CURRENT
J2599_201208
This SAE Recommended Practice covers design and evaluation of the entire gasoline filler pipe assembly used on cars and light trucks with respect to compliance with CARB (California Air Resources Board) LEV II (meeting or exceeding EPA Tier 2 and EU Stage-5 evaporative emissions requirements). It is limited to an assembly which is joined to the fuel tank using either a hose, Quick Connect Coupling, or a grommet type sealing device. The Design Practice covers the filler cap, filler pipe, filler pipe assembly to tank hose, and filler pipe assembly to tank grommet or spud. It includes recommendations for design of components and assemblies intended to perform successfully in evaporative emission SHED (Sealed Housing for Evaporative Determination) tests, based on best practices known at the time of release.
Standard

Fuel Filler Pipe Assembly Design Practice to Meet Low Evaporative Emission Requirements

2019-09-11
WIP
J2599
This SAE Recommended Practice covers design and evaluation of the entire gasoline filler pipe assembly used on cars and light trucks with respect to compliance with CARB (California Air Resources Board) LEV II (meeting or exceeding EPA Tier 2 and EU Stage-5 evaporative emissions requirements). It is limited to an assembly which is joined to the fuel tank using either a hose, Quick Connect Coupling, or a grommet type sealing device. The Design Practice covers the filler cap, filler pipe, filler pipe assembly to tank hose, and filler pipe assembly to tank grommet or spud. It includes recommendations for design of components and assemblies intended to perform successfully in evaporative emission SHED (Sealed Housing for Evaporative Determination) tests, based on best practices known at the time of release.
Standard

Fuel Filler Pipe Assembly Design Practice to Meet Low Evaporative Emission Requirements

2002-11-07
HISTORICAL
J2599_200211
This SAE Recommended Practice covers design and evaluation of the entire gasoline filler pipe assembly used on cars and light trucks with respect to compliance with CARB (California Air Resources Board) LEV II (meeting or exceeding EPA Tier 2 and EU Stage-5 evaporative emissions requirements). It is limited to an assembly which is joined to the fuel tank using either a hose, Quick Connect Coupling, or a grommet type sealing device. The Design Practice covers the filler cap, filler pipe, filler pipe assembly to tank hose, and filler pipe assembly to tank grommet or spud. It includes recommendations for design of components and assemblies intended to perform successfully in evaporative emission SHED (Sealed Housing for Evaporative Determination) tests, based on best practices known at the time of release.
X