Refine Your Search

Topic

Author

Search Results

Standard

Electric Park Brake Sizing

2017-10-16
WIP
J3158
The scope of this new recommended practice should include, but not necessarily be limited to: 1. Define vehicle operating conditions used to drive MOC-EPB actuator design and selection 2. Define brake corner operating conditions (e.g. temperature and state of burnish) used to drive MOC-EPB actuator design and selection 3. Define actuator operating conditions (e.g. temperature, voltage, current limit, and state of wear) used to drive MOC-EPB actuator design and selection 4. Define methodology for addressing part to part variation in performance
Standard

Seals and Wipers for Mechanical and Electromechanical Actuators

2021-04-29
WIP
AIR7379
The purpose of this AIR is to provide a comprehensive description document that displays various examples of low pressure seals and wipers utilized within mechanical and electromechanical actuators. The document is intended as an overview for those specifying or designing actuators in order to compare existing solutions as reference for implementation.
Standard

FLUID POWER PIPING CLEANING PROCESS

1995-09-01
CURRENT
J2254_199509
The procedures and guidelines detailed in this SAE Information Report provide various techniques and processes to properly clean fluid power piping prior to assembly and operation.
Standard

Dynamic Ozone Test Procedure--Hydraulic Brake Hose

1988-06-01
CURRENT
J1914_198803
The purpose of this recommended practice is to evaluate in the laboratory the effect of flexing on a brake hose when exposed to a high ozone concentration environment. This recommended practice is intended for all vehicle hydraulic brake hoses. It is an accelerated test which subjects the hose to dynamic ozone exposure.
Standard

HYDRAULIC POWER UNITS USED ON MACHINE TOOLS AND EQUIPMENT FOR THE AUTOMOTIVE INDUSTRY

1994-11-01
CURRENT
J1689_199411
This SAE Standard defines the expectations for free-standing, nonintegral, nonpressurized reservoir, flooded inlet type, industrial hydraulic power units used on machine tools and equipment for the automotive industry. These exclude power units used for intermittent and/or noncontinuous duty cycle and pressurized vessels, such as accumulators and air over oil systems. Objectives were set and accomplished to develop a consensus of common features which enhance the power unit performance, manufacturing quality, and maintainability. Some of those features are: a Identification b Common sizes and construction c Conductors and connectors d Pump/motor groups e Filters
Standard

Parking Brake Control Identification - Vehicles with Hydraulic Brake Systems and Automatic Transmissions

2020-07-13
CURRENT
J2688_202007
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Standard

Connections for General Use and Fluid Power - Test Methods-Threadless Connections

2016-08-31
CURRENT
J2682_201608
This SAE standard specifies uniform methods for the testing of threadless connections for hydraulic fluid power applications. These connections are intended for general application and hydraulic systems on industrial equipment and commercial products. These connections shall be capable of providing leak proof connections in hydraulic systems operating from 95 kPa vacuum to working pressures specified by the manufacturer. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, it is recommended that sufficient testing be conducted and reviewed by both the user and manufacturer to ensure that required performance levels are met.
Standard

Welded Flash Controlled, High Strength (690 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Stress Relieved Annealed for Bending and Double Flaring

2009-08-18
HISTORICAL
J2832_200908
This SAE Standard covers stress relieved electric resistance welded flash controlled single wall high strength low alloy steel tubing intended for use in high pressure hydraulic lines and in other applications requiring tubing of a quality suitable for bending, double flaring and cold forming. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead. The grade of material produced to this specification is of micro-alloy content and is considerably stronger and intended to service higher pressure applications using thinner walls than like sizes of the grades of material specified in SAE J356, SAE J2435 and SAE J2613. Due to the alloy content of the material, the forming characteristics of the finished tube are equal to or better, when compared to SAE J356, SAE J2435 and SAE J2613. Nominal reference working pressures for this tubing are listed in ISO 10763 and SAE J1065.
Standard

Welded Flash Controlled, High Strength (690 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Stress Relieved, Annealed for Bending, Double Flaring, Cold Forming, and Brazing

2019-02-27
CURRENT
J2832_201902
This SAE Standard covers stress relieved electric resistance welded flash controlled single wall high strength low alloy steel tubing intended for use in high-pressure hydraulic lines and in other applications requiring tubing of a quality suitable for bending, double flaring,cold forming and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path caused by the ID weld bead. The grade of material produced to this specification is of micro-alloy content. Nominal reference working pressures for this tubing are listed in ISO 10763 and SAE J1065. Brazed and/or welded tube assembly configurations made to specific geometry and components in association with this material may require qualification testing in accordance with ISO 19879. Cold forming the tube end configurations avoids this systemic testing by not compromising the structural integrity of the tube material.
Standard

Hydraulic Hybrid Terminology and Definitions

2012-11-21
CURRENT
J2898_201211
As the number of Hydraulic Hybrid Powertrain equipped motor vehicles has increased, the number of terms, abbreviations, and acronyms which describe various components of these systems has increased. For the sake of industry standardization and to bring some order to the proliferation of such terms, abbreviations, and acronyms, the SAE Truck and Bus Hydraulic Hybrid committee prepared this document.
Standard

Graphics - Based Service Information

2016-10-13
HISTORICAL
J2892_201610
This document establishes standard graphical symbols and color conventions for use in either still (static) or animated graphics used for communicating service information. This document’s purpose is to communicate conventions for using those symbols and colors to accurately and consistently communicate intended information via graphics-based documentation. These practices are intended for use in service procedures, assembly instructions, training materials, and similar applications when trying to minimize the amount of human natural language text used within the document. The still and animated graphical conventions referenced should support effective communication via paper and “traditional” electronic media. The conventions can also extend to documenting via additional electronic delivery paradigms such as Augmented Reality (AR).
Standard

Graphics-Based Service Information

2021-11-23
CURRENT
J2892_202111
This document establishes standard graphical symbols and color conventions for use in either still (static) or animated graphics used for communicating service information. This document’s purpose is to communicate conventions for using those symbols and colors to accurately and consistently communicate intended information via graphics-based documentation. These practices are intended for use in service procedures, assembly instructions, training materials, and similar applications when trying to minimize the amount of human natural language text used within the document. The still and animated graphical conventions referenced should support effective communication via paper and “traditional” electronic media. The conventions can also extend to documenting via additional electronic delivery paradigms such as augmented reality (AR).
Standard

Graphics - Based Service Information

2013-10-21
HISTORICAL
J2892_201310
This document establishes standard graphical symbols and color conventions for use in either still (static) or animated graphics used for communicating service information. This document’s purpose is to communicate conventions for using those symbols and colors to accurately and consistently communicate intended information via graphics-based documentation. These practices are intended for use in service procedures, assembly instructions, training materials, and similar applications when trying to minimize the amount of human natural language text used within the document. The still and animated graphical conventions referenced should support effective communication via paper and “traditional” electronic media. The conventions can also extend to documenting via additional electronic delivery paradigms such as Augmented Reality (AR).
Standard

Hydraulic Fluid Power - Accelerated Method for Determining the Wear Characteristics of a Hydraulic Component Due to Contaminants

2015-08-21
WIP
J2890
1. Scope. 1.1 This Recommended Practice defines a procedure, which will aid in assessing the contaminant sensitivity of hydraulic components. This procedure utilizes a very high level of contaminant that permits an accelerated test to determine the affects of contamination in a relatively short period. This recommended practice utilizes the contamination sensitivity test circuit and contaminants identified in SAE J2470. 1.2 This procedure does not establish contamination sensitivity requirements for any hydraulic component. The user of this procedure needs to be aware of the system contamination level that the component will operate in and select test contamination levels significantly higher that the operating level in order to assess the suitability of the component.
Standard

Hydraulic Fluid Power - Accelerated Method for Determining the Wear Characteristics of a Hydraulic Component Due to Contaminants

2010-06-21
CURRENT
J2890_201006
This Recommended Practice defines a procedure, which will aid in assessing the contaminant wear characteristics of hydraulic components. This procedure utilizes a very high level of contaminant that permits an accelerated test to determine the wear effects of contamination in a relatively short period. This recommended practice utilizes the contamination sensitivity test circuit identified in SAE J2470.
Standard

Brake Hydraulic Component Flow Rate Measurement for High Differential Pressure (>5 bar)

2017-05-18
CURRENT
J3052_201705
This recommended practice provides a method, test set-up, and test conditions for brake hydraulic component flow rate measurement for high differential pressure (>5 bar) flow conditions. It is intended for hydraulic brake components which affect the brake fluid flow characteristics in a hydraulic brake circuit, that are part of a circuit for which the flow characteristics are important to system operation, and that are exposed to high operating pressure differentials (in the 5 to 100 bar range). Typical applications may include measurement of flow through chassis controls valve bodies, orifices in the brake system such as in flow bolts, junction blocks, and master cylinders, and through brake pipe configurations.
Standard

Thread Sealants

2021-01-27
CURRENT
J1615_202101
Male pipe threads, including male dryseal pipe threads, when made into assemblies or installed into ports, will generally leak if not covered with a sealant. This SAE Recommended Practice is intended as a guide to assist designers and/or users in the selection and application of various types of thread sealants. The designers and users must make a systematic review of each type and application and then select the sealant to fulfill the requirements of the application. The following are general guidelines and are not necessarily a complete list.
X