Refine Your Search

Topic

Author

Search Results

Standard

Color Coding of Child Restraint Labels

2021-04-07
WIP
J3250
Define recommendations for color coding of child restraint labels, specifically focused on the information contained therein and whether it provides information for installation in a forward facing, rear facing, or booster mode.
Standard

Guidelines for Implementation of the Child Restraint Anchorage System or LATCH System in Motor Vehicles and Child Restraint Systems

2020-02-17
WIP
J2893
1. SCOPE These guidelines should be considered: When implementing the LATCH system in vehicle seating positions that will be designated by the vehicle owner’s manual and in the information included in the owners manual. When implementing the LATCH system in child restraint designs that include the LATCH system and in the information included in the instruction manual
Standard

MANUAL CONTROLS FOR MATURE DRIVERS

1997-10-01
CURRENT
J2119_199710
Since little data exists to provide appropriate values for control parameters that would be appropriate for mature drivers, the following recommendations are of a general nature. However, they are based upon the current understanding of the aging processes that characterize mature drivers. Notwithstanding the lack of an extensive amount of data in this field, the dissemination of this SAE Information Report is considered to be appropriate and timely in light of the large increase in the number of mature drivers on the public roads, and because of the need to at least initiate efforts toward developing an information report covering this issue. It is realized that there may be cases where specific recommendations may conflict with vehicle packaging and/or operational requirements. Deviation from the recommendations may be necessary and permissible to achieve the best overall system performance.
Standard

On-Board Land Vehicle Mayday Reporting Interface

1999-09-28
CURRENT
J2313_199909
This SAE Standard describes the interface between an on-vehicle Mayday detection, reporting system and the off-vehicle response center that will manage the response to the vehicle's call for assistance. The automatic detection and reporting by either the intelligent vehicle itself or by the intelligent roadway of a vehicle that is disabled or involved in an accident, [referred to as Automatic Mayday], is one of the key services identified by the ITS America program plan road map. This effort has been identified, as STD SAE J2313 in recent DOT-FHWA efforts to advance needed National standards. This document primarily addresses the responsibilities of a vehicle in detecting and reporting such an event. Equipment suites on each vehicle will vary widely, as will the communications channel employed to report the incident.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2016-04-28
HISTORICAL
J2937_201604
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2021-10-08
CURRENT
J2937_202110
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Event Data Recorder - Compliance Assessment

2015-12-17
HISTORICAL
J1698/3_201512
This SAE Recommended Practice defines procedures intended to be used to validate that relevant EDR output records conform within specified limits to measured sensor input to the device.
Standard

Event Data Recorder - Compliance Assessment

2013-06-13
HISTORICAL
J1698/3_201306
This SAE Recommended Practice defines procedures that may be used to validate that relevant EDR output records conform with the reporting requirements specified in Part 563, Table 1 during the course of FMVSS-208, FMVSS-214 and other applicable vehicle level crash testing.
Standard

Event Data Recorder - Compliance Assessment

2020-09-29
CURRENT
J1698/3_202009
This SAE Recommended Practice defines procedures intended to be used to validate that relevant EDR output records conform within specified limits to measured sensor input to the device.
Standard

The Effects of Front-Mounted Accessories on Air Bag Sensors and Crashworthiness

2019-10-09
CURRENT
J2431_201910
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

The Effects of Front-mounted Accessories on Air Bag Sensors and Crashworthiness

1997-10-01
HISTORICAL
J2431_199710
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

DYNAMIC TEST PROCEDURE - TYPE 1 AND TYPE 2 SEAT BELT ASSEMBLIES

1970-01-01
HISTORICAL
J117_197001
This SAE Recommended Practice establishes a dynamic test procedure for evaluating Type 1 lap belt assemblies for pelvic restraints and Type 2 assemblies for combination pelvic and upper torso restraints, as defined in SAE J4c. Uniform test requirements, test procedures, a seat belt assembly loading device, and data recording requirements are specified. The intent of the recommended practice is to provide an acceptance procedure employing a dynamic test method for determining the ability of seat belt assemblies to meet minimal requirements for restraining a seat belt assembly loading device. A simple dynamic test is described which will yield repeatable and comparable results while simulating the loading condition a seat belt assembly is subjected to in a frontal accident. The impact conditions generate belt loads representative of those obtained in a motor vehicle striking a rigid barrier head on at 30 mph as stated in SAE J850.
Standard

Considerations for Suspension Modification

2019-10-09
CURRENT
J2492_201910
The scope of this document is limited specifically to the following types of passenger vehicles: automobiles, light trucks, and sport/utility vehicles. This document addresses modifications as they apply to legal use of the vehicle, and examines suspension modification as it applies to stock (as manufactured) ride height, and changed (raised or lowered) ride height. Note that modifications of ride height are considered, exclusive of wheel and/or tire modifications, which can also have potentially serious side effects, and are outside the scope of this document.
Standard

Considerations for Suspension Modification

1999-06-01
HISTORICAL
J2492_199906
The scope of this document is limited specifically to the following types of passenger vehicles: automobiles, light trucks, and sport/utility vehicles. This document addresses modifications as they apply to legal use of the vehicle, and examines suspension modification as it applies to stock (as manufactured) ride height, and changed (raised or lowered) ride height. Note that modifications of ride height are considered, exclusive of wheel and/or tire modifications, which can also have potentially serious side effects, and are outside the scope of this document.
Standard

ROLL-OVER TESTS WITHOUT COLLISION

1980-06-01
HISTORICAL
J857_198006
This SAE Recommended Practice is intended to establish guidelines for conducting passenger car roll-over tests so that data obtained by various test facilities may be more readily compared. A description is provided of the facilities and procedures for a curved rail-ramp technique, which has been found to be successful in producing roll-overs. Techniques and instrumentation for the study and evaluation of vehicle structure effects and occupant movement resulting from roll-overs produced by the curved rail-ramp system are also specified. The curved rail-ramp procedure has been evolved from laboratory and field studies and tests which have sought to establish procedures which would provide realistic simulations of roll-over accidents without collision, and which would be reproducible among laboratories and between different types of passenger cars. The original issue of SAE J857 described ground level and hill roll-over techniques.
Standard

ROLL-OVER TESTS WITHOUT COLLISION

1963-06-01
HISTORICAL
J857_196306
Roll-over tests are conducted to evaluate vehicle structure and occupant injury potential. This SAE Recommended Practice is in tended to establish guidelines for conducting passenger car rollover tests for the purpose of standardizing these tests, so that data obtained by various test facilities may be more readily compared. Methods and instrumentation are recommended for the study and evaluation of vehicle structures and occupant movement in simulated roll-over accidents without collision. Procedures and equipment described will be subject to continuing review and will be revised as experience and improvements in the technology warrant.
X