Refine Your Search

Topic

Author

Search Results

Standard

Environmental Control Systems (ECS) for UA (Unmanned Aircraft)

2022-06-24
WIP
AIR7063
This document provides guidance for establishing ECS for UA by primarily referencing existing AC-9 documents that apply with some indication how they need to be adapted. The document primarily addresses cooling requirements for UA equipment. Limited information is provided for ECS requirements for future UA that may carry passengers. The document does not intend to provide detail design guidance for all types of UA. This document only provides guidance related to environmental control of onboard equipment, cargo and possible animals and passengers. It does not pertain to the related ground stations that may be controlling the UA.
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1968-11-01
HISTORICAL
ARP986
This document defines the tests to be performed on electrically, pneumatically, and mechanically actuated (regulating, modulating, and shutoff) air valves. The valves may be further defined as those which function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions to maintain a calibrated duct air condition (i. e., air flow, air pressure, air temperature, air pressure ratio, etc. ). The requirements of this document should govern for all qualification tests unless different requirements are established by the detail specifications.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Stationary Sound Testing of Snowmobiles, Procedure and Enforcement Issues

2021-05-13
CURRENT
J2641_202105
This SAE Information Report provides basic information about the issues surrounding the administration of stationary, infield sound testing of snowmobiles. The information provided herein is meant to enhance safety, improve the environment, and promote uniform testing.
Standard

General Environmental Considerations for Marine Vehicles

2014-02-04
WIP
J1777
This Hydrospace Information Report (HIR) identifies the general environmental considerations for the design, development, evaluation, and testing of advanced surface craft, submersible vehicles, and other marine craft. This HIR provides criteria on the environmental limits within which marine vehicles, related components, and associated equipment should operate satisfactorily and reliably. This HIR is intended for use as a guide for the development of specific environmental requirements to be included in detailed specifications for marine vehicles and associated equipment. Specific requirements are in a state of continual change as our knowledge of the ocean environment increases. The ocean environment varies with location and time. Changes in the ocean environment can occur not only on a seasonal basis but also monthly, weekly, daily, and in some cases even hourly.
Standard

Hydraulic Pump Airborne Noise Bench Test

2006-11-08
HISTORICAL
J2747_200611
Communicate the process of accurately measuring sound power levels of positive displacement hydraulic pumps commonly used in ground vehicle steering systems. This recommended practice defines the pump mounting (pulley, belt tension, isolation), operating conditions (fluid, speed, temperature, pressure), room acoustics, instrumentation, noise measurement technique and data acquisition setup to be used. Included are recommendations for test sample size, and format for data presentation/reporting.
Standard

Hydraulic Pump Airborne Noise Bench Test

2019-09-13
CURRENT
J2747_201909
Communicate the process of accurately measuring sound power levels of positive displacement hydraulic pumps commonly used in ground vehicle steering systems. This recommended practice defines the pump mounting (pulley, belt tension, isolation), operating conditions (fluid, speed, temperature, pressure), room acoustics, instrumentation, noise measurement technique and data acquisition setup to be used. Included are recommendations for test sample size, and format for data presentation/reporting.
Standard

Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials

2017-08-11
CURRENT
J2846_201708
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
Standard

Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials

2010-05-26
HISTORICAL
J2846_201005
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
Standard

Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials

2019-10-14
WIP
J2846
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
X