Refine Your Search

Topic

Search Results

Standard

Spacecraft Life Support Systems

2011-06-20
HISTORICAL
AIR1168/14
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management.
Standard

Oxygen Sensor Technologies

2020-12-18
CURRENT
AIR5933
AIR5933 provides an overview of contemporary technologies (i.e., sensors) that measure the proportion of oxygen in a gas. The use of these sensors in the aerospace environment, with its special constraints, is discussed and papers/reports with detailed information are summarized and referenced. The sensors are divided into expendable and non-expendable sensors. Expendable sensors are based on electrochemical properties, whereas non-expendable sensors rely on paramagnetic, photo-acoustic, electromagnetic, and laser spectroscopy properties.
Standard

Design Considerations for Enclosed Turboshaft Engine Test Cells

2018-11-21
CURRENT
AIR4989A
This SAE Aerospace Information Report (AIR) developed by a broad cross section of personnel from the aviation industry and government agencies is offered to provide state-of-the-art information for the use of individuals and organizations designing new or upgraded turboshaft engine test facilities.
Standard

DESIGN CONSIDERATIONS FOR ENCLOSED TURBOSHAFT ENGINE TEST CELLS

2007-11-15
HISTORICAL
AIR4989
This SAE Aerospace Information Report (AIR) developed by a broad cross section of personnel from the aviation industry and government agencies is offered to provide state-of-the-art information for the use of individuals and organizations designing new or upgraded turboshaft engine test facilities.
Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2011-11-02
HISTORICAL
J2914_201111
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

DIESEL ENGINE EMISSION MEASUREMENT PROCEDURE

1990-06-01
HISTORICAL
J1003_199006
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission levels of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighting factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NOx. All emissions are measured during steady-state engine operation.
Standard

DIESEL ENGINE EMISSION MEASUREMENT PROCEDURE

1995-06-28
HISTORICAL
J1003_199506
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission levels of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighting factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NOx. All emissions are measured during steady-state engine operation.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1978-04-01
HISTORICAL
J1094A_197804
This SAE Recommended Practice describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. In some areas of CVS practice, alternate procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: 1. Introduction 2. Definitions 3. Test Equipment 3.1 Sampler 3.2 Bag Analysis 3.3 Modal Analysis 3.4 Instrument Operating Procedures 3.5 Supplementary Discussions 3.6 Tailpipe Connections 3.7 Chassis Dynamometer 4. Operating and Calibrating Procedure 4.1 Calibration 4.2 Operating Procedures 5. Data Analysis 5.1 Bag Analysis 5.2 Modal Analysis 5.3 Background 5.4 Fuel Economy 6. Safety
X