Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Modeling of Fastener Kitting Logistics for Boeing Wide Body Airplanes

2009-11-10
2009-01-3252
At Boeing’s commercial aircraft production in Everett Washington, the organization that supplies parts to the factory floor (known internally as Company 625) is revising their methods. A new process will deliver parts in kits that correspond to the installation plans used by the mechanics. Several alternative methods are under review. The authors used simulation methods to evaluate and compare these alternatives. This study focuses on the category of parts known as standard fasteners (‘standards’). Through direct observation, interviews with experts, as well as time and motion study, the process flow of the kitting operation was mapped A simulation model was created using the simulation software ARENA to examine two scenarios: the current kitting operation in the factory cribs and the proposed centralization of kitting operation in the Company 625.
Journal Article

Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension

2015-09-15
2015-01-2609
Minimizing the stress concentrations around cutouts in a plate is often a design problem, especially in the Aerospace industry. A problem of optimizing spatially varying fiber paths in a symmetric, linear orthotropic composite laminate with a cutout, so as to achieve minimum stress concentration under remote unidirectional tensile loading is of interest in this study. A finite element (FE) model is developed to this extent, which constraints the fiber angles while optimizing the fiber paths, proving essential in manufacturing processes. The idea to be presented could be used to derive fiber paths that would drastically reduce the Stress Concentration Factor (SCF) in a symmetric laminate by using spatially varying fibers in place of unidirectional fibers. The model is proposed for a four layer symmetric laminate, and can be easily reproduced for any number of layers.
Technical Paper

The StressWaveTM Fatigue Life Enhancement Process

2001-09-10
2001-01-2578
A new, patented process for improving the fatigue lives of holes in metal structures has been developed. The process, known as StressWaveTM, produces residual compressive stresses and fatigue performance comparable to, or better than, those produced by legacy cold working methods and is designed primarily for automated manufacturing, fastening and assembly environments. Eliminating the need for close-tolerance starting holes, consumable sleeves, liquid lubricant cleanup and off-line processing increases speed of operation. These process benefits and associated cost savings satisfy many aspects of lean and continuous improvement program initiatives.
Technical Paper

Advances in Real-Time Monitoring of Acoustic Emissions

1997-06-03
972254
We are developing a flexible and general methodology for real-time monitoring of acoustic emissions in machining applications. The goal of this work is to develop an approach to in-process monitoring which allows continuous assessment of tool wear and early warning of process exceptions. The nature of metal removal processes creates short-lived vibrations that carry information about the condition of the cutting tool and quality of cut. We wish to extract and represent these transient events without loss of important spectral structure. Other challenges include the need for system training data selection in the absence of expert labeled data, the modeling of short-term time evolution, and efficient real-time operation on an inexpensive computing platform.
Technical Paper

The Effect of Geometric Field of View and Tunnel Design for Perspective Flight-Path Displays

1992-07-01
921131
Previous studies have shown that use of flight-path displays may lead to increased situational awareness during final approach and landing. However, there are a number of research issues which remain to be investigated concerning the optimum design of a perspective flight-path display. The purpose of this paper is to report the results of a study which investigated the relationship between the geometric field of view, number of tunnels in the display, and flight-path complexity on the subject's ability to fly a computer-simulated aircraft during final approach. Implications of the results for the design of perspective flight-path displays are discussed.
Technical Paper

Traceable Part Batching Performance Modeling: A Simulation Case Study

2004-09-21
2004-01-2822
This paper addresses a simulation modeling case study of a batching process. The batching process exists in a multi-server, multi-queue aircraft component manufacturing system where all parts and batches are serial numbered for traceability. Every lot of parts requires a unique set of serial numbers and the sequence of batches is required to follow the airplane master production schedule. The study goal was to identify and provide solutions to shorten arrival time differences among parts going to the same batch in a system of more than 100 shared processes. Queue lengths, resource utilization, bottlenecks, and various scenario comparisons were yielded from simulation modeling exercises.
Technical Paper

Peening with High Pressure Waterjets

1999-06-05
1999-01-2285
An experimental study of waterjet peening on 7075-T6 aluminum alloy was conducted to investigate the effects of waterjet conditions. Erosion surface features caused by high velocity jet impingement were evaluated as functions of standoff distance, jet pressure, and jet velocity. Surface characteristics were evaluated in terms of subsurface work hardening, surface finish and a degree of surface residual stresses. Results show that waterjet peening induces the same level of plastic deformation at the surface layer as shot peening.
Technical Paper

Use of Cavitation Abrasive Surface Finishing to Improve the Fatigue Properties of Additive Manufactured Titanium Alloy Ti6Al4V

2021-03-02
2021-01-0024
To improve the fatigue properties of additive manufactured (AM) titanium alloy Ti6Al4V, cavitation abrasive surface finishing (CASF) was proposed. With CASF, a high-speed water jet with cavitation, i.e. a cavitating jet, was injected into a water-filled chamber, to which abrasives were added. Abrasives accelerated by the jet created a smooth surface by removing un-melted particles on the surface. Simultaneously, cavitation impacts induced by the jet introduced compressive residual stress and work hardening into the surface, similar to cavitation peening. In this study, to demonstrate the improvement of the fatigue properties of AM Ti6Al4V owing to CASF, Ti6Al4V specimens manufactured through direct metal laser sintering (DMLS) and electron beam melting (EBM) were treated using CASF and cavitation peening, and tested using a plane bending fatigue test.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
X