Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Counterfeit and Substandard Battery Risk Mitigation

2018-07-24
WIP
AS7492
The Counterfeit and Substandard Battery Risk Mitigation sub-committee, G21B, is proposed with the goal of addressing the significant risk presented by counterfeit and substandard batteries. A standard similar to the SAE AS6171 Anti-counterfeit standard will provide inspection methods and risk mitigation strategies, to help mitigate the risk for the Aerospace and Defense industries, to the benefit of all.
Standard

Verification Methods for MIL-STD-1760 Stores

2017-08-09
WIP
AS42702
This document establishes techniques for verifying that a Mission Store Interface (MSI) complies with the interface requirements delineated in MIL-STD-1760 Revision E.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Netlist Assurance Test Methods

2016-02-15
WIP
AS6171/16
Netlist Assurance Test Methods exist to assess microcircuit designs for maliciously added, removed, or modified functions detrimental to system operation. In the context of the Microcircuit fabrication design process, these methods will be used to analyze a computer aided design (CAD) representation of the microcircuit. The Netlist Assurance Test Methods discover vulnerabilities, undisclosed functions (e.g. "kill switch", paths to leak passwords, or triggers of malicious activity) and changes from the original specifications of the devices. These methods are intended to be used with standard verification methods that the implemented design has remained unchanged through the many transformations in the design flow.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Thermomechanical Analysis (TMA) Test Methods

2016-12-09
WIP
AS6171/18
This test method provides the capabilities, limitations, and suggested possible applications of TMA as it pertains to detection of suspect/counterfeit EEE parts. Additionally, this document outlines requirements associated with the application of TMA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Laser Scanning Microscopy (LSM) and Confocal Laser Scanning Microscopy (CLSM) Test Methods

2015-12-17
WIP
AS6171/17
This document defines capabilities and limitations of LSM and CLSM as they pertain to suspect/counterfeit EEE part detection. Additionally, this document outlines requirements associated with the application of LSM and CLSM including: operator training, sample preparation, various imaging techniques, data interpretation, calibration, and reporting of test results. This test method is primarily directed to analyses performed in the visible to near infrared range (approximately 400nm to 1100nm). The Test Laboratory shall be accredited to ISO/IEC 17025 to perform the LSM and CLSM Test Methods as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 Scope statement, the specific method being accredited to: Option 1: All AS6171/17 Test Methods, or Option 2: All AS6171/17 Test Methods except CLSM. If SAE AS6171/17 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Auger Electron Spectroscopy (AES) Test Method

2016-12-09
WIP
AS6171/19
This document defines capabilities and limitations of Auger Electron Spectroscopy (AES) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of AES including: operator training and requirements; sample preparation; data interpretation and reporting of data.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Gas Chromatography/Mass Spectrometry (GC/MS) Test Methods

2016-12-09
WIP
AS6171/21
This document defines capabilities and limitations of Gas Chromatography/Mass Spectrometry (GC/MS) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of GC/MS including: operator training; sample preparation; various sampling techniques; data interpretation; computerized spectral matching; equipment maintenance; and reporting of data. The discussion is limited to unit mass resolution spectrometers such as quadrupole systems and electron impact ionization.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by X-Ray Photoelectron Spectroscopy (XPS) Test Method

2016-12-09
WIP
AS6171/20
To define capabilities and limitations of X-Ray Photoelectron Spectroscopy (XPS) as it pertains to detection of suspect/counterfeit EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of XPS including: operator training and requirements; sample preparation; data interpretation; and data reporting procedures.
Standard

TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PARTS DETECTION BY RADIATED ELECTROMAGNETIC EMISSION (REME) ANALYSIS TEST METHODS

2016-05-16
WIP
AS6171/14
The intent of this document is to define the methodology for suspect/counterfeit parts inspection using REME Analysis. The purpose of REME Analysis for suspect counterfeit part inspection is to detect misrepresentation or tampering of a part. REME Analysis can also potentially detect unintentional damage to the part resulting from improper removal of the part from assemblies, exposure to electrostatic discharge, exposure to radiation outside of acceptable limits (ionizing or high-power electromagnetic), or degradation. Improper removal of part from assemblies may include, but is not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Degradation may include, but is not limited to, prolonged burn-in/testing, exposure to out-of-specification environmental conditions, or use outside of expected electrical tolerances.
Standard

Broadband 1553

2018-05-22
WIP
AS8774
This standard defines a broadband time division command/response multiplex data bus that co-exists and permits concurrent operation with a MIL-STD-1553 Data Bus and MIL-STD-1760 Appendix C. This standard allows utilization of legacy MIL-STD-1553 wiring and bus coupling.
Standard

Performance based packaging standard for lithium batteries as cargo on aircraft

2016-03-18
WIP
AS6413
This standard is intended to demonstrate and document the control of the potential hazards from lithium cells or batteries (UN 3090 and 3480) when transported as cargo on aircraft. [still need to identify if we are addressing global (external fire) or local (battery internal failures)] This standard addresses the need to control the hazards which might arise from a failure from an individual cell by containing the hazards within the package. This specific hazards addressed within this standard are: • Uncontrolled fire • Rapid overpressure pulse within compartment
Standard

AS6171 TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PART PACKAGING DETECTION BY VARIOUS TEST METHODS

2016-02-03
WIP
AS6171/15
Non-conformance and now Suspect counterfeit packaging represents a hazard to electrostatic discharge (ESD) sensitive devices or components through cross contamination during transport and storage while generating high voltage discharges to ESD sensitive devices during in shipping, the inspection process, handling and manufacturing. Several aerospace related issues involve long-term storage supplier non-conformance with antistatic foams, antistatic bubble, antistatic pink poly, vacuum formed antistatic polymers, Type I moisture barrier bags and Type III static shielding bags have posed issues. The late John Kolyer, Ph.D. (Boeing, Ret.) and Ray Gompf, P.E., Ph.D. (NASA-KSC, Ret.) were advocates in the utilization of a formalized physical testing material qualification process. Today, however, prime contractors and CMs rely heavily upon a visual inspection process for ESD packaging materials.
Standard

High Performance Laser Sintering Process for Thermoplastic Parts for Aerospace Applications

2019-01-15
WIP
AMS7102
This specification will establish the critical controls and requirements for the production of reliable, repeatable, reproducible aerospace parts by Laser Sintering fabrication but is not limited to such application. This procedure will establish guidelines that users shall follow to approve new machines, processes, and materials. Specifically, this specification covers the configuration of the machine, operating software, machine calibration, machine and build parameters, and testing methodology required to create high performance aerospace parts. This specification also outlines the user’s responsibility for following the established guidelines and documentation requirements
Standard

Material for High Performance Laser Sintering

2019-01-15
WIP
AMS7103
This specification will establish the minimum requirements for Laser Sintering feedstock to be used in conjunction with the Laser Sintering process specification for fabricating LS parts. The Laser Sintering part (with/without subsequent processing) may be used for, but not limited to, aerospace applications. This specification outlines the minimum technical and documentation requirements for Laser Sintering materials.
Standard

Global eLoran User Equipment Interface Standard

2018-12-18
WIP
SAE1012
There are numerous GNSS user equipment interface standards in use that provide some form of timing and/or positioning information. This document incorporates their essential content into a uniform array that will enable seamless interoperation with eLoran.
Standard

Global eLoran User Equipment Interface Standard for Timing

2019-04-16
WIP
SAE1012/1
There are numerous GNSS user equipment interface standards in use that provide some form of timing and/or positioning information. This document incorporates their essential content into a uniform array that will enable seamless interoperation with eLoran.
Standard

Standard for Interfacing Resilient GNSS Receivers

2019-04-18
WIP
SAE1014
This standard defines how a resilient GNSS receiver provides enough information for an alternative PNT source to be selected when the GNSS receiver does not meet the required levels of accuracy, availability, integrity, or continuity even when the GNSS signals are subject to interference
X