Refine Your Search

Topic

Author

Search Results

Standard

Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground-Digital Annex

2019-09-11
CURRENT
ARP5149CDA
This Digital Annex (DA) contains the current, full-PDF version of ARP5149B, Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground, as well as .jpeg format files of Appendix D, Application Guidelines Configuration, Critical Component, and Spray Area Diagrams for Aircraft. The .jpeg diagram files may be used by purchasers in accordance with the terms of the included license agreement.
Standard

In-truck manufacturing of SAE Type I Aircraft Deicing Fluid

2019-10-29
WIP
ARP6677
This SAE Aerospace Recommended Practice (ARP) covers requirements for in-truck manufacturing of SAE AMS1424 Type I deicing/anti-icing fluid, and contains technical and other requirements which apply to the in-truck manufacturing of Type I deicing/anti-icing fluid
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Standard

Masking and Cleaning of Epoxy and Polyester Matrix Thermosetting Composite Materials

2020-02-28
WIP
ARP4916A
This SAE Aerospace Recommended Practice (ARP) describes methods of masking and cleaning commercial aircraft, epoxy and polyester matrix, composite parts prior to their entry into the composites shop, masking and cleaning of on-wing repair areas in preparation for carrying out repairs and wipe cleaning during repair and prior to bonding. It this document is used for the masking or cleaning of materials other than epoxy and polyester matrix thermosetting composite materials, the fitness for this purpose must be determined by the user.

The methods of masking and cleaning described in this document have specific limited application and are not interchangeable. The methods shall only be used when specified in an approved repair procedure or with the agreement of the Original Equipment Manufacturer (OEM) or regulatory authority.

Standard

MASKING AND CLEANING OF EPOXY AND POLYESTER MATRIX THERMOSETTING COMPOSITE MATERIALS

2011-11-16
CURRENT
ARP4916
This SAE Aerospace Recommended Practice (ARP) describes methods of masking and cleaning commercial aircraft, epoxy and polyester matrix, composite parts prior to their entry into the composites shop, masking and cleaning of on-wing repair areas in preparation for carrying out repairs and wipe cleaning during repair and prior to bonding. If this document is used for the masking or cleaning of materials other than epoxy and polyester matrix thermosetting composite materials, the fitness for this purpose must be determined by the user. The methods of masking and cleaning described in this document have specific limited application and are not interchangeable. The methods shall only be used when specified in an approved repair procedure or with the agreement of the Original Equipment Manufacturer (OEM) or regulatory authority.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel Emission Control Systems

2011-04-12
2011-01-0308
Diesel NOx emissions control utilizing combined Lean NOx Trap (LNT) and so-called passive or in-situ Selective Catalytic Reduction (SCR) catalyst technologies (i.e. with reductant species generated by the LNT) has been the subject of several previous papers from our laboratory [ 1 - 2 ]. The present study focuses on hydrocarbon (HC) emissions control via the same LNT+SCR catalyst technology under FTP driving conditions. HC emissions control can be as challenging as NOx control under both current and future federal and California/Green State emission standards. However, as with NOx control, the combined LNT+SCR approach offers advantages for HC emission control over LNT-only aftertreatment. The incremental conversion obtained with the SCR catalyst is shown, both on the basis of vehicle and laboratory tests, to result primarily from HC adsorbed on the SCR catalyst during rich LNT purges that reacts during subsequent lean engine operation.
Journal Article

New Insights into Reaction Mechanism of Selective Catalytic Ammonia Oxidation Technology for Diesel Aftertreatment Applications

2011-04-12
2011-01-1314
Mitigation of ammonia slip from SCR system is critical to meeting the evolving NH₃ emission standards, while achieving maximum NOx conversion efficiency. Ammonia slip catalysts (ASC) are expected to balance high activity, required to oxidize ammonia across a broad range of operating conditions, with high selectivity of converting NH₃ to N₂, thus avoiding such undesirable byproducts as NOx or N₂O. In this work, new insights into the behavior of an advanced ammonia slip catalyst have been developed by using accelerated progressive catalyst aging as a tool for catalyst property interrogation. The overall behavior was deconstructed to several underlying functions, and referenced to an active but non-selective NH₃ oxidation function of a diesel oxidation catalyst (DOC) and to the highly selective but minimally active NH₃ oxidation function of an SCR catalyst.
Standard

Measurement of Exterior Noise Produced by Aircraft Auxiliary Power Units (APUs) and Associated Aircraft Systems During Ground Operation

2013-07-19
WIP
ARP1307C
Test procedures are described for measuring noise at specific receiver locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Procedures are also described for measuring noise level and directivity at noise source locations to facilitate the understanding and interpretation of the data. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. This document makes no provision for predicting APU or component noise from basic engine characteristics or design parameters, nor for measuring noise of more than one aircraft operating at the same time. No attempt is made to suggest acceptable levels of noise or suitable subjective criteria for judging acceptability. ICAO Annex 16 Volume I Attachment C provides guidance on recommended maximum noise levels.
Standard

Monitoring Aircraft Noise and Operations in the Vicinity of Airports: System Validation

2020-01-28
WIP
ARP4721/2A
This SAE Aerospace Recommended Practice (ARP) provides engineering methods that can be applied to monitoring aircraft noise and operations in the vicinity of airports using either attended or unattended monitoring systems, as well as methods for validation of measurement results from permanent systems. Part 1 provides guidance on the components, installation and administration of permanent systems and guidance on analysis of data collected from temporary monitoring of aircraft noise. Part 2, this part, describes both system screening tests and detailed test methods for validating the data reported by permanently installed systems. This document is intended as a guide toward standard practice and is subject to change with experience and technical advances.
Standard

Health, Safety and First Aid

2019-11-12
CURRENT
AS6286/5A
This document shall be used in conjunction with: AS6286 - Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground AS6286/1 - Processes including Methods AS6286/2 - Equipment AS6286/3 - Fluids AS6286/4 - Weather AS6286/6 - Aircraft Deicing/Anti-icing Diagrams, No-Spray-Zones
Standard

Technical Data Collection During Deicing

2022-11-07
WIP
ARP7978
Create a standard from an IT perspective to collect data in the same fashion when an aircraft is deiced to include - Out - On Pad - On Spot - Start Spray (type I) - Stop Spray (type I) - Start Spray (type IV) - Stop Spray (type IV) - Dispatch - Off pad - Off Also, include a standard for engine inspected and pass/fail
Standard

Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-Icing Chemicals

2022-10-27
CURRENT
AIR6172B
This test method provides stakeholders (runway deicing chemical manufacturers, users, regulators and airport authorities) with relative ice undercutting capacity of runway deicing chemicals, by measuring the area of ice undercut pattern as a function of time. Such runway deicing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice undercutting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
Standard

Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-Icing Chemicals

2022-10-27
CURRENT
AIR6211B
This test method provides stakeholders (runway deicing chemical manufacturers, users, regulators, and airport authorities) with a relative ice penetration capacity of runway deicing/anti-icing chemicals, by measuring the ice penetration as a function of time. Such runway deicing/anti-icing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice penetration capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
X