Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Design and Structural Analysis of Bumper for Automobiles

1998-02-01
980114
An investigation has been performed to study the response of the front bumper beam of automobiles subjected to an external impact load. In the investigation, an aluminum shell structure is modeled as a beam, and the energy absorber of polyurethane is also modeled as statically equivalent springs attached to the beam. Castigliano's second theorem and principles of energy and momentum are then used to calculate the reaction forces and maximum deflection. Stress distribution is then calculated using the beam theory. The primary concern of the investigation is to present a procedure of how to design optimally the cross-sectional shape of the front bumper of automobiles.
Technical Paper

Body Optimization for Front Loading Design Process

2014-04-01
2014-01-0388
An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

The Opening Mechanism Analysis on Hood, Tail Gate, and Trunk Lid by Mathematical Modeling

1995-02-01
950827
The theory and the computer software to analyze the behaviour of moving mechanism(Hood, Tail Gate and Trunk Lid) equiped with the gas lifters or the torsion bars has been developed to figure out what will be the dynamic behaviour of moving mechanism at the design stage. The developed computer software gives the approximated calculation of load-angle characteristics, the velocity, the acceleration and the total opening time so that the designer makes the optimum decision on the location and the strength of panel to which the gas lifters or the torsion bars are mounted.
Technical Paper

Development of Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concept

1996-02-01
960522
A computational technique for predicting roof crush resistance in the early design stage of vehicle development is presented in this paper. This technique developed a simple nonlinear finite element beam model with several nonlinear spring elements which represent plastic hinge behaviors after bending collapse. In general, these plastic hinge behaviors are apt to occur al each weak area of vehicle body structure. By idealizing actual sections as equivalent simple sections, maximum bending moments are calculated for all weak areas. Predicted results of roof crush resistance arc correlated well with test results.
Technical Paper

An Optimal Design Software For Vehicle Suspension Systems

2000-05-01
2000-01-1618
Vehicle suspensions can be regarded as interconnection of rigid bodies with kinematic joints and compliance elements such as springs, bushings, and stabilizers. Design of a suspension system requires detailed specification of the interconnection point (or so called hard points) and characteristic values of compliance elements. During the design process, these design variables are determined to meet some prescribed performance targets expressed in terms of SDFs(Suspension Design Factors), such as toe, camber, compliance steer, etc. This paper elaborates on a systematic approach to achieve optimum design of suspension systems.
Technical Paper

Development of a Lightweight CFRP Coil Spring

2014-04-01
2014-01-1057
Today, all manufacturers of vehicles are up for the challenge to abide in automobile emission control laws. Weight reduction is one of the best solutions to reduce both fuel consumption and emissions. The most effective method for the said idea is to have lightweight materials to some parts of vehicle using the FRP(Fiber Reinforced Plastics). In order to obtain good mechanical properties of FRP, continuous fiber should be used. But it is difficult to design and manufacture FRP parts using continuous fiber because of material properties and molding process. In this paper, it is used CF(carbon Fiber) and Epoxy to make a composite material. Properties of this CFRP can be predicted through analysis. Tests and simulations of specimen are performed as every step progresses for correlation. A spring can be designed to meet all requirements for specific performance. The CFRP spring is made by new devices and methods and can be applied to vehicle for practical use.
X