Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Technical Paper

Study on Sound Insulation Performance of Vehicle Dash Reinforcements

2014-06-30
2014-01-2085
Dash panel is the most important path of structure-borne and air-borne interior noise for engine-driven vehicles. Reinforcements, which are added to dash panel, are mainly designed in order to suppress the structure-borne noise contribution from the dash panel. However, the effects of dash reinforcements do not seem clear in the viewpoint of air-borne noise. In this paper, the insulation performance of a dash structure with spot-welded reinforcements is studied through several STL (Sound Transmission Loss) tests and STL simulations. The results of this study could be utilized for increasing the sound insulation performance of vehicle body structure.
Technical Paper

Prediction and Improvement of High Frequency Road Noise of a Mid-Size Sedan

2007-05-15
2007-01-2307
An airborne SEA model to predict high frequency interior noise is built for a mid-size sedan. The 60 KPH running condition is simulated based on this model and then the corresponding result is compared to the measured interior noise. A very similar prediction is found. Also, weak points of sound insulation and effective absorption area in this vehicle are identified using the model. It is shown that in an early design stage and when the proto vehicle is not available yet, the airborne SEA model is very useful to find out weak points of vehicle sound packages.
X