Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Motion Capture Applications in Forensic Injury Accident Reconstruction

2007-06-12
2007-01-2476
Forensic injury accident reconstruction is used to determine what happened in an accident, typically for use in a court of law. In order to be admitted as evidence in a trial, the analysis must be scientifically sound, and performed utilizing standard scientific methods. The use of motion capture methods for forensic biomechanical applications provides an accurate, scientifically proven technique that has advantages not only due to its technical capabilities, but also in its highly visual manner of result presentation. This paper illustrates the use of a near-infrared motion capture system in two different types of forensic biomechanics applications. In one case, motion capture was utilized to capture externally applied force data and synchronized with the three-dimensional human body posture to perform a musculoskeletal biomechanics analysis.
Technical Paper

The Use of Single Moving Vehicle Testing to Duplicate the Dynamic Vehicle Response From Impacts Between Two Moving Vehicles

2002-03-04
2002-01-0558
The Federal Side Impact Test Procedure prescribed by FMVSS 214, simulates a central, orthogonal intersection collision between two moving vehicles by impacting the side of the stationary test vehicle with a moving test buck in a crabbed configuration. While the pre- and post-impact speeds of the vehicles involved in an accident can not be duplicated using this method, closing speeds, vehicle damage, vehicle speed changes and vehicle accelerations can be duplicated. These are the important parameters for the examination of vehicle restraint system performance and the prediction of occupant injury. The acceptability of this method of testing is not as obvious for the reconstruction of accidents where the impact is non-central, or the angle of impact is not orthogonal. This paper will examine the use of crash testing with a single moving vehicle to simulate oblique or non-central collisions between two moving vehicles.
Technical Paper

Application of Scaled Deflection Injury Criteria to Two Small, Fragile Females in Side Impact Motor Vehicle Crashes

2018-04-03
2018-01-0542
Thoracic injury criteria have been previously developed to predict thoracic injury for vehicle occupants as a function of biomechanical response. Historically, biomechanical testing of post-mortem human surrogates (PMHS) for injury criteria development has primarily been focused on mid-sized males. Response targets and injury criteria for other demographics, including small females, have been determined by scaling values from mid-sized males. The objective of this study was to explore the applicability of scaled injury criteria to their representative population. Two PMHS were subjected to a side-impact loading condition which replicates a near-side, MDB-to-vehicle impact for the driver. This was accomplished using the Advanced Side Impact System, or ASIS, on a HYGE sled. The sled acceleration matched the acceleration profile of an impacted vehicle, while the four pneumatic cylinders of the ASIS produced realistic door intrusion.
Journal Article

The Roles of Vehicle Seat Cushion Stiffness and Length in Child Restraint System (CRS) Performance

2020-04-14
2020-01-0977
The objective is to determine whether responses and injury risks for pediatric occupants in child restraint systems (CRS) are affected by vehicle seat cushion stiffness and fore/aft cushion length. Eighteen sled tests were conducted using the Federal Motor Vehicles Safety Standard (FMVSS) 213 frontal pulse (48 km/h). Seats from a recent model year vehicle were customized by the manufacturer with three different levels of cushion stiffness: compliant, mid-range, and stiff. Each stiffness level was quantified using ASTM D 3574-08 and all were within the realistic range of modern production seats. The usable length of each seat cushion was manipulated using foam spacers provided by the manufacturer. Two different seat lengths were examined: short (34.0 cm) and long (43.5 cm).
Technical Paper

Rear-Facing Child Restraint Systems in Rear Impact Sled Tests

2018-04-03
2018-01-1325
This study examines the performance of rear-facing child restraint systems (RF CRS) in moderate severity rear impact sled tests. The study also investigates the effects of RF CRS features on CRS kinematics and anthropomorphic test device (ATD) injury metrics in this scenario. Twelve tests were conducted at a moderate severity rear impact sled pulse (approximately 28.2 km/h and 18.4 g). Four models of RF CRS were tested in the rear outboard positions of a sedan seat. The CRABI 12-month-old and Hybrid III 3-year-old ATDs were instrumented with head and chest accelerometers, head angular rate sensors, six-axis upper neck load cells, and a chest linear potentiometer (3-year-old only). The effects of carry handle position, occupant size, presence of anti-rebound bar, Swedish style tethering, and lower anchor vs. seat belt installation were investigated. Data were also compared to pediatric injury assessment reference values (IARV).
Journal Article

Comparison of Child Restraint System (CRS) Installation Methods and Misuse During Far-Side Impact Sled Testing

2023-04-11
2023-01-0817
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso.
X