Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Method of Acceleration Order Extraction for Active Engine Mount

The active engine mount (AEM) is developed in automotive industry to improve overall NVH performance. The AEM is designed to reduce major-order signals of engine vibration over a broad frequency range, therefore it is of vital importance to extract major-order signals from vibration before the actuator of the AEM works. This work focuses on a method of real-time extraction of the major-order acceleration signals at the passive side of the AEM. Firstly, the transient engine speed is tracked and calculated, from which the FFT method with a constant sampling rate is used to identify the time-related frequencies as the fundamental frequencies. Then the major-order signals in frequency domain are computed according to the certain multiple relation of the fundamental frequencies. After that, the major-order signals can be reconstructed in time domain, which are proved accurate through offline simulation, compared with the given signals.
Technical Paper

Object Detection Method of Autonomous Vehicle Based on Lightweight Deep Learning

Object detection is an important visual content of the autonomous vehicle, the traditional detecting methods usually cost a lot of computational memory and elapsed time. This paper proposes to use lightweight deep convolutional neural network (MobilenetV3-SSDLite) to carry out the object detection task of autonomous vehicles. Simulation analysis based on this method is implemented, the feature layer obtained after h-swish activation function in the first Conv of the 13th bottleneck module in MobilenetV3 is taken as the first effective feature layer, and the feature layer before pooling and convolution of the antepenultimate layer in MobilenetV3 is taken as the second effective feature layer, and these two feature layers are extracted from the MobilenetV3 network.
Technical Paper

Comparison between Different Modelling Methods of Secondary Path to Maximize Control Effect for Active Engine Mounts

Active engine mount (AEM) is an effective approach which can optimize the noise, vibration and harshness (NVH) performance of vehicles. The filtered-x-least-mean-squares (FxLMS) algorithm is widely applicated for vibration attenuation in AEMs. However, the performance of FxLMS algorithm can be deteriorated without an accurate secondary path estimation. First, this paper models the secondary path using finite impulse response (FIR) model, infinite impulse response (IIR) model and back propagation (BP) neural network model and the model errors of which are compared to determine the most accurate and robust modeling method. After that, the influence of operation frequency on accuracy of the secondary path model is analyzed through simulation approach. Then, the impact of reference signal mismatch on the control effect is demonstrated to study the robustness of FxLMS algorithm.