Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

Back-Flow Atomization in the Intake Port of Spark Ignition Engines

1997-10-01
972988
Drop size measurements were performed in the intake port of a motoring engine using a laser diffraction particle sizing technique. The experimental parameters which were varied include number of injection cycles, start of injection timing, engine speed and manifold pressure. Two injectors having different atomization and dispersion characteristics were used in the study, a production dual jet injector which produced Sauter Mean Diameters (SMDs) in the range of 250 to 400 μm and an air assist injector which had a line-of-sight SMD of 39 μm. In measurements with the dual jet injector, after initial injection, the quantity of fuel present in the intake port was observed to increase with each subsequent injection event, reaching a steady state value after 6 to 10 injection cycles. The SMD produced by the back-flow atomization was independent of the number of injection events and independent of engine speed over a range of 750 to 1500 RPM.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

2000-03-06
2000-01-0243
A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
X