Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

An Enhanced Computer-Based Process Simulation Model for the Cylinder Boring Process

1991-04-01
910957
This paper discusses an advanced computer-based process simulation model to predict cutting forces and surface error (also referred to as the lack of cylindricity) for the cylinder boring process. The model takes into consideration several enhanced features including dual and multiple-cylinder boring, back-boring, boring in the presence of windows/cavities, etc.. The model makes use of a Finite Element product model and the cutting force process model to generate a surface error profile at any axial level in the cylinder bore. A design of experiment approach is employed to study the influence of various process variables on bore surface error. The enhanced process simulation model may be used as a valuable tool in enhancing the simultaneous engineering of products and manufacturing processes.
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

The Effects of Cylinder Head Deformation and Asymmetry on Exhaust Valve Thermo-Mechanical Stresses

1998-02-23
981034
A geometrically accurate, three-dimensional finite element model of a Diesel engine exhaust valve and cylinder head assembly has been developed to analyze the effect of cylinder head interactions on exhaust valve stresses. Results indicate that a multi-lobed stress pattern occurs around the exhaust valve head due to cylinder head deformation, stiffness variations, and thermal asymmetry. Consequently, peak valve bending and hoop stresses from the three-dimensional model are 48% and 40% higher, respectively, than for the two-dimensional, axisymmetric model. These results indicate the degree of model complexity required for more accurate analyses of exhaust valve operating stresses.
Technical Paper

Comparing the Operation of a High Speed Direction Injection Engine Using MVCO Injector and Conventional Fuel Injector

2009-04-20
2009-01-0718
The operation of a small bore high speed direct injection (HSDI) engine with a MVCO injector is simulated by the KIVA 3V code, developed by Los Alamos National Laboratory. The MVCO injector extends the range of injection timings over conventional injectors and it extra flexibility in designing injection schemes. Combustion from very early injection is observed with MVCO injections but not with conventional injection. This improves the fuel economy of the engine in terms of lower ISFC. Even better efficiency can be achieved by using biodiesel, which may be due to extra oxygen in the fuel improving the combustion process. Biodiesel sees a longer ignition delay for the initial injection. It also exhibits a faster burning rate and shorter combustion duration. Biodiesel also lowered both NOx and soot emissions. This is consistent with the general observation for soot emissions.
Technical Paper

An Efficient and Unified Combustion Model for CFD of SI and CI Engine Operation

2017-03-28
2017-01-0572
In this work, an efficient and unified combustion model is introduced to simulate the flame propagation, diffusion-controlled combustion, and chemically-driven ignition in both SI and CI engine operation. The unified model is constructed upon a G-equation model which addresses the premixed flame propagation. The concept of the Livengood-Wu integral is used with tabulated ignition delay data to account for the chemical kinetics which is responsible for the spontaneous ignition of fuel-air mixture. A set of rigorously defined operations are used to couple the evolution of the G scalar field and the Livengood-Wu integral. The diffusion-controlled combustion is simulated equivalent to applying the Burke-Schumann limit. The combined model is tested in the simulation of the premixed SI combustion in a constant volume chamber, as well as the CI combustion in a conventional small bore diesel engine.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
Technical Paper

Dual-Pump Coherent Anti-Stokes Raman Scattering Measurements in a Direct-Injection Natural Gas Engine

1998-02-23
980144
Single-laser-shot measurements of the fuel/air ratio in the cylinder of a motored direct-injection natural gas (DING) engine were obtained using a dual-pump coherent anti-Stokes Raman scattering (CARS) technique capable of simultaneously probing N2 and CH4. The DING engine was modified for optical access and CARS was used to probe the region near the glow plug. Measurements were acquired at eight different probe volume locations with one crank angle degree resolution for injections starting at 30° and 20° BTDC. The CARS data clearly show the arrival of the fuel jet at the probe volume and, from traversing the probe volume, the location of the centerlines of two fuel jets in the vicinity of the glow plug. The CARS measurements also show large fluctuations in fuel concentration on a shot-to-shot basis indicating the presence of large-scale mixing structures within the fuel jets.
Technical Paper

Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine

1993-03-01
930217
Cylinder head combustion chamber and piston temperatures and heat fluxes were measured in a 2.2 L 4 cylinder spark ignition engine. Measurements for the combustion chamber were made at wide open throttle conditions, 1400 rpm to 5000 rpm at 600 rpm increments, additional measurements were made on the combustion chamber at part throttle conditions at 3200 RPM. Piston temperature and heat flux measurements were made at WOT conditions from 1400 to 3200 RPM in 600 RPM increments. Average combustion chamber surface temperatures ranged from 130 deg. C to 248 deg. C, while peak combustion chamber surface temperatures ranged from 142 deg. C to 258 deg. C for WOT conditions. Peak heat flus at the surface for WOT conditions in the combustion chamber ranged from 1.2 MW/m2to 5.0 MW/m2. Central region heat fluxes were 2.3 to 2.8 times greater than those in the end gas regions of the combustion chamber.
Technical Paper

Optimization of Inlet Port Design in a Uniflow-Scavenged Engine Using a 3-D Turbulent Flow Code

1993-04-01
931181
The finite volume, three-dimensional, turbulent flow code ARIS-3D is applied to the study of the complex flow field through the inlet port and within the cylinder of a uniflow-scavenged engine. The multiblock domain decomposition technique is used to accommodate this complex geometry. In this technique, the domain is decomposed into two blocks, one block being the cylinder and the other being the inlet duct. The effects of inlet duct length, geometric port swirl angle, and number of ports on swirl generating capability are explored. Trade-offs between swirl level and inherent pressure drop can thus be identified, and inlet port design can be optimized.
Technical Paper

Modeling of Blow-by in a Small-Bore High-Speed Direct-Injection Optically Accessible Diesel Engine

2006-04-03
2006-01-0649
The blow-by phenomenon is seldom acquainted with diesel engines, but for a small bore HSDI optical diesel engine, the effects are significant. A difference in peak pressure up to 25% can be observed near top-dead-center. To account for the pressure differences, a 0-D crevice flow model with a dynamic ring pack model was incorporated into the KIVA code to determine the amount of blow-by. The ring pack model will take into account the forces acting on the piston rings, the position of the piston rings, and the pressure located at each region of the crevice volume at every time step. The crevice flow model takes into consideration the flow through the circumferential gap, ring gap, and the ring side clearance. As a result, the cylinder mass, trapped mass in the crevice regions, and the blow-by values are known. Validation of the crevice model is accomplished by comparing the in-cylinder motoring pressure trace with the experimental motoring data.
Technical Paper

Low Temperature Combustion within a Small Bore High Speed Direct Injection (HSDI) Diesel Engine

2005-04-11
2005-01-0919
Homogeneous Charge Compression Ignition (HCCI) combustion employing single main injection strategies in an optically accessible single cylinder small-bore High-Speed Direct Injection (HSDI) diesel engine equipped with a Bosch common-rail electronic fuel injection system was investigated in this work. In-cylinder pressure was taken to analyze the heat release process for different operating parameters. The whole cycle combustion process was visualized with a high-speed digital camera by imaging natural flame luminosity. The flame images taken from both the bottom of the optical piston and the side window were taken simultaneously using one camera to show three dimensional combustion events within the combustion chamber. The engine was operated under similar Top Dead Center (TDC) conditions to metal engines. Because the optical piston has a realistic geometry, the results presented are close to real metal engine operations.
Technical Paper

Cylinder Pressure Data Acquisition and Heat Release Analysis on a Personal Computer

1986-02-01
860029
The availability and low price of personal computers with suitable interface equipment has made it practical to use such a system for cylinder pressure data acquisition. With this objective, procedures have been developed to measure and record cylinder pressure on an individual crank angle basis and obtain an average cylinder pressure trace using an Apple II Plus personal computer. These procedures as well as methods for checking the quality of cylinder pressure data are described. A simplified heat release analysis technique for an approximate first look at the data quality is presented. Comparisons are made between the result of this analysis, the Krieger-Borman heat release analysis which uses complete chemical equilibrium. The comparison is made to show the suitability of the simplified analysis in judging the quality of the pressure data.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

2000-03-06
2000-01-0243
A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
Technical Paper

Methane Jet Penetration in a Direct-Injection Natural Gas Engine

1998-02-01
980143
A direct-injection natural gas (DING) engine was modified for optical access to allow the use of laser diagnostic techniques to measure species concentrations and temperatures within the cylinder. The injection and mixing processes were examined using planar laser-induced fluorescence (PLIF) of acetone-seeded natural gas to obtain qualitative maps of the fuel/air ratio. Initial acetone PLIF images were acquired in a quiescent combustion chamber with the piston locked in a position corresponding to 90° BTDC. A series of single shot images acquired in 0.1 ms intervals was used to measure the progression of one of the fuel jets across the cylinder. Cylinder pressures as high as 2 MPa were used to match the in-cylinder density during injection in a firing engine. Subsequent images were acquired in a motoring engine at 600 rpm with injections starting at 30, 20, and 15° BTDC in 0.5 crank angle degree increments.
X