Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Improving Upon Best Available Technology: A Clean Flex Fuel Snowmobile

2008-09-09
2008-32-0049
The University of Wisconsin-Madison Snowmobile Team has designed and constructed a clean, quiet, high performance snowmobile for entry in the 2008 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 750 cc fuel-injected four-stroke engine equipped with a fuel sensor which allows operation ranging from regular gasoline to an 85% blend of ethanol and gasoline (E85). The engine has been customized with a Mototron control system which allows for full engine optimization using a range of fuels from E00 to E85. Utilizing a heated oxygen sensor and a 3-way catalyst customized for this engine by W.C. Heraeus-GmbH, this sled reduces NOx, HC and CO emissions by up to 89% to an average specific mass of 0.484, 0.154, 4.94 g/kW-hr respectively. Finally, the Mototron system also allowed Wisconsin to extract another 4 kW from the Weber 750cc engine; producing 45 kW and 65 Nm of torque.
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

2003-05-19
2003-01-1821
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Technical Paper

Spark Ignition Engine Operation and Design for Minimum Exhaust Emission

1966-02-01
660405
The purpose of the tests conducted on a single-cylinder laboratory engine was to determine the mechanism of combustion that affect exhaust emissions and the relationship of those mechanisms to engine design and operating variables. For the engine used in this study, the exhaust emissions were found to have the following dependence on various engine variables. Hydrocarbon emission was reduced by lean operation, increased manifold pressure, retarded spark, increased exhaust temperature, increased coolant temperature, increased exhaust back pressure, and decreased compression ratio. Carbon monoxide emission was affected by air-fuel ratio and premixing the charge. Oxides of nitrogen (NO + NO2 is called NOx) emission is primarily a function of the O2 available and the peak temperature attained during the cycle. Decreased manifold pressure and retarded spark decrease NOx emission. Hydrocarbons were found to react to some extent in the exhaust port and exhaust system.
Technical Paper

The Reaction of Ethane in Spark Ignition Engine Exhaust Gas

1970-02-01
700471
This paper describes a method for studying reactions of hydrocarbons in S.I. engine exhaust gases. The reaction of ethane is described using an Arrhenius model (experimentally E = 86,500 cal/mole) for the rate of ethane diappearance and empirical correlations for distributions of the products carbon monoxide, ethylene, formaldehyde, methane, acetylene, and propane as a function of the fraction of ethane reacted. The results show that the nature of partial oxidation products from a nonreactive hydrocarbon may be less desirable from an air pollution viewpoint than the initial hydrocarbon.
Technical Paper

The Effect of a TiO2 Coating with the Addition of H2 Gas on Emissions of a Small Spark-Ignition Engine

2014-11-11
2014-32-0034
This study looks at the application of a titanium dioxide (TiO2) catalytic nanoparticle suspension to the surface of the combustion chamber as a coating, as well as the addition of hydrogen gas to a four-stroke spark-ignited carbureted engine as a possible technique for lowering engine-out emissions. The experiments were conducted on two identical Generac gasoline powered generators using two, four and six halogen work lamps to load the engine. One generator was used as a control and the second had key components of the combustion chamber coated with the catalytic suspension. In addition to the coating, both engines were fed a hydrogen and oxygen gas mixture and tested at low, medium and high loads. Using an unmodified engine as a control set, the following three conditions were tested and compared: addition of hydrogen only, addition of coating only, and addition of hydrogen to the coated engine.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Technical Paper

High Speed Dual-Fuel RCCI Combustion for High Power Output

2014-04-01
2014-01-1320
In recent years society's demand and interest in clean and efficient internal combustion engines has grown significantly. Several ideas have been proposed and tested to meet this demand. In particular, dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion has demonstrated high thermal efficiency, and low engine-out NOx, and soot emissions. Unlike homogeneous charge compression ignition (HCCI) combustion, which solely relies on the chemical kinetics of the fuel for ignition control, RCCI combustion has proven to provide superior combustion controllability while retaining the known benefits of low emissions and high thermal efficiency of HCCI combustion. However, in order for RCCI combustion to be adopted as a high efficiency and low engine-out emission solution, it is important to achieve high-power operation that is comparable to conventional diesel combustion (CDC).
X