Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Intake Flow Effects on Combustion and Emissions in a Diesel Engine

1998-02-23
980508
Using modified versions of the KIVA-II and KIVA-3 CFD codes, intake, compression, and combustion of a Caterpillar diesel engine was modeled. Seven variations on intake and two injection schemes were explored so that a detailed understanding of the effects of intake on various flow properties and their subsequent influence on combustion and emissions could be obtained. The results revealed that, in many cases, one of three factors: swirl ratio, temperature, and turbulence, was dominant in describing a combustion or emission behavior. In addition, stratification of fuel and oxygen was found to be a result of high swirl ratios. This had a profound impact on combustion and emissions, especially for split injection cases.
Technical Paper

Intake and Cylinder Flow Modeling with a Dual-Valve Port

1993-03-01
930069
Intake port and cylinder flow have been modeled for a dual intake valve diesel engine. A block structured grid was used to represent the complex geometry of the intake port, valves, and cylinder. The calculations were made using a pre-release version of the KIVA-3 code developed at Los Alamos National Laboratories. Both steady flow-bench and unsteady intake calculations were made. In the flow bench configuration, the valves were stationary in a fully open position and pressure boundary conditions were implemented at the domain inlet and outlet. Detailed structure of the in-cylinder flow field set up by the intake flow was studied. Three dimensional particle trace streamlines reveal a complex flow structure that is not readily described by global parameters such as swirl or tumble. Streamlines constrained to lie in planes normal to the cylinder axis show dual vortical structures, which originated at the valves, merging into a single structure downstream.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Modeling the Effects of Valve Lift Profile on Intake Flow and Emissions Behavior in a DI Diesel Engine

1995-10-01
952430
Variations in the in cylinder flow field which result from differences in the intake flow are known to have important effects on the performance and emissions behavior of diesel engines. The intake flow and combustion in a heavy duty DI diesel engine with a dual valve port have been simulated using the computational fluid dynamics code KIVA-3. Variation of the in-cylinder flow field has been achieved by varying the intake valve timing. Variations in the in-cylinder flow, including a range of length scales, degrees of inhomogeneity in a number of scalar and vector quantities, and the persistence of various flow structures, are compared, and their significance to combustion and emissions parameters are assessed. The interaction of fuel spray parameters, particularly spray-wall interaction with structures present in the flow field are evaluated.
X