Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Determining the Vertical and Longitudinal First Mode of Vibration of a Wide Base FEA Truck Tire

2016-04-05
2016-01-1308
The purpose of this study is to determine the effect of tire operating conditions, such as the tire inflation pressure, speed, and load on the change of the first mode of vibration. A wide base FEA tire (445/50R22.5) is virtually tested on a 2.5m diameter circular drum with a 10mm cleat using PAM-Crash code. The varying parameters are altered separately and are as follows: inflation pressure, varying from 50 psi to 165 psi, rotational speed, changing from 20 km/h to 100 km/h, and the applied load will fluctuate from 1,500 lbs. to 9000 lbs. Through a comparison of previous literature, the PAM-Crash FFT algorithmic results have been validated.
Technical Paper

Development of Truck Tire-Soil Interaction Model using FEA and SPH

2013-04-08
2013-01-0625
Modern Finite Element Analysis (FEA) techniques allow for accurate simulation of various non-linear systems. However they are limited in their simulation of particulate matter. This research uses smooth particle hydrodynamics (SPH) in addition to FEA techniques to model the properties of soils, which allows for particle-level replication of soils. Selected soils are simulated in a virtual environment and validated using the pressure-sinkage and shear tests. A truck tire model is created based on standard heavy vehicle tires and validated using static deflection, contact footprint, and dynamic first mode of vibration tests. The validated tires and soils are used to create a virtual terrain and the tire is placed on the soil, loaded, and run over the soil at various speeds. The results of these simulations show that the SPH modeling technique offers higher accuracy than comparable FEA models for soft soils at a higher computational cost.
Technical Paper

A Comprehensive Study of the Impact of Tread Design on the Tire-Terrain Interaction using Advanced Computational Techniques

2023-04-11
2023-01-0018
This paper investigates the impact of tread design on the tire-terrain interaction of two similar-sized truck tires with distinctly different tread designs running over various terrains and operating conditions using advanced computation techniques. The two truck tires used in the research are off-road tires sized 315/80R22.5 wide which were designed through Finite Element Analysis (FEA). The truck tire models were validated in static and dynamic domains using several simulation tests and measured data. The terrain includes a flooded surface and a snowed surface which were modelled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated using pressure-sinkage and direct shear tests. Both truck tire models were subjected to rolling resistance and cornering tests over the various flooded surface and snowed surface terrain conditions on the PAM-CRASH software.
Technical Paper

Development of a Wide Base Rigid Ring Tire Model for Rigid Surfaces

2015-04-14
2015-01-0626
The purpose of this research paper is to outline the procedure behind the parameter population of a wide-base rigid ring model. A rigid ring model is a mathematical representation of a highly non-linear FEA tire model that incorporates the characteristics and behaviour of a known physical tire. The rigid ring model parameters are determined using carefully designed virtual scenarios which will isolate for the parameter in question. Once all of the parameters have been calculated, for in-plane as well as out-of-plane parameters, a full rigid ring model can be populated. This model can also be modified to accommodate for a tire model simulated running over soft soils if necessary. For the purpose of this research however, the soft soil parameters were not determined. Once the rigid ring model is complete, the parameters can be used in a highly simplified virtual model to replicate the known behaviour of the tire but reduce the overall complexity of the full vehicle model.
Technical Paper

Development of a Modified Off-Road Rigid Ring Tire Model for Heavy Trucks

2014-04-01
2014-01-0878
The rigid-ring tire model is a simplified tire model that describes a tire's behaviour under known conditions through various in-plane and out-of-plane parameters. The complex structure of the tire model is simplified into a spring-mass-damper system and can have its behaviour parameterized using principles of mechanical vibrations. By designing non-linear simulations of the tire model in specific situations, these parameters can be determined. They include, but are not limited to, the cornering stiffness, vertical damping constants, self-aligning torque stiffness and relaxation length. In addition, off-road parameters can be determined using similar methods to parameterize the tire model's behaviour in soft soils. By using Finite Element Analysis (FEA) modeling methods, validated soil models are introduced to the simulations to find additional soft soil parameters.
Technical Paper

Modeling of Tire-Wet Surface Interaction Using Finite Element Analysis and Smoothed-Particle Hydrodynamics Techniques

2018-04-03
2018-01-1118
This paper focuses on predicting the rolling resistance and hydroplaning of a wide base truck tire (Size: 445/50R22.5) on dry and wet surfaces. The rolling resistance and hydroplaning are predicted at various inflation pressures, loads, velocities, and water depths. The wide base truck tire was previously modeled and validated using Finite Element Analysis (FEA) technique in virtual performance software (Pam-Crash). The water is modeled using Smoothed-Particle Hydrodynamics (SPH) method and Murnaghan equation of state. A water layer is first built on top of an FEA rigid surface to represent a wet surface. The truck tire is then inflated to the desired pressure. A vertical load is then applied to the center of the tire. For rolling resistance tests variable constant longitudinal speeds are applied to the center of the tire. The forces in the vertical and longitudinal directions are computed, and the rolling resistance is calculated.
X