Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles

2023-02-14
CURRENT
J1711_202302
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) and plug-in hybrid-electric vehicles (PHEVs) designed for public roads. This recommended practice provides instructions for measuring and calculating the exhaust emissions and fuel economy of such vehicles over the following standard test cycles: the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Driving Schedule (HFEDS), the US06 Driving Schedule (US06), the SC03 Driving Schedule (SC03), and the cold-start Federal Test Procedure (cold FTP), which is based on the UDDS. However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
Standard

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles

1999-03-01
HISTORICAL
J1711_199903
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEV's driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
Standard

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles

2010-06-08
HISTORICAL
J1711_201006
This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2017-07-12
HISTORICAL
J1634_201707
This SAE Recommended Practice establishes uniform procedures for testing Battery Electric Vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system's performance and not on subsystems apart from the vehicle. NOTE: The range and energy consumption values specified in this document are the raw, test-derived values.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2021-04-06
CURRENT
J1634_202104
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2012-10-04
HISTORICAL
J1634_201210
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEV’s) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system’s performance and not on subsystems apart from the vehicle. NOTE: The range and energy consumption values specified in this document are the raw, test-derived values.
X