Refine Your Search

Topic

Author

Search Results

Technical Paper

The Research about Thermal Stratification Effect on Pressure Rise Rate in Supercharged HCCI Engine based on Numerical Analysis

2009-11-03
2009-32-0141
The HCCI engine is a next generation engine, with high efficiency and low emissions. However a rate of pressure rise is a major limitation for high load range. Recently, we are able to reduce the rate of pressure rise using thermal stratification. Nevertheless, this was insufficient to produce high power. Without the higher equivalent ratio, one way to improve the power is to increase the intake boost pressure. It is suggested that the rate of pressure rise is reduced by thermal stratification and the power is increased by boost pressure at the same time. The objective of this work is to understand the characteristics of combustion, knock and emissions for using both thermal stratification and the boost pressure. The calculations are performed by CHEMKIN and modified SENKIN. As a result of increasing the boost pressure, a higher IMEP was attained while the rate of pressure rise increased only slightly in the HCCI with thermal stratification.
Technical Paper

Analysis of the combustion dispersion mechanism in HCCI Engine

2009-11-03
2009-32-0086
Delaying CA50(Crank Angle of 50% Heat Release) of the HCCI engine to expansion stroke can lead to high indicated thermal efficiency as well as the avoidance of knocking. However, this method could induce the problem of cycle variability. In this study, the cycle-to-cycle variation of a HCCI engine fueled with DME was investigated. Experimental parameters of each cycle, such as in-cylinder temperature, pressure and gas flow rate, were recorded by fast response system, and analyzed consequently. Moreover, the interdependency between the combustion and the performance parameters were evaluated.
Technical Paper

Mechanism Analysis of Influence of Engine Speed on HCCI Combustion by using Numerical Calculation

2009-11-03
2009-32-0087
In HCCI Engine, HCCI combustion characteristics come under the influence of change of compression speed corresponding to engine speed. The purpose of this study is to investigate mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the Influence of engine speed was showed. And then, In order to clarified the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix.
Technical Paper

An Investigation of the Potential of Thermal and Mixing Stratifications for Reducing Pressure Rise Rate on HCCI Combustion by using Rapid Compression Machine

2009-11-03
2009-32-0085
Thermal and mixing stratifications have been thought as one of the ways to avoid an excessive pressure rise on HCCI combustion. The purpose of this research is to investigate the potential of thermal and mixing stratifications for reducing PRR (Pressure Rise Rate) on HCCI combustion. The pre-mixture with thermal and mixing stratifications is charged in RCM (Rapid Compression Machine). After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and chemiluminescence images are obtained and analyzed. Furthermore, experimental results are compared with the computational results calculated by using multi-zone model for analyzing these mechanisms.
Technical Paper

Analysis of the Effect of Eco-driving with Early Shift-up on Real-world Emission

2010-10-25
2010-01-2279
For the reduction of greenhouse gas emission in the transportation sector, various countermeasures against CO₂ emission have been taken. The eco-driving has been paid attention because of its immediate effect on the CO₂ reduction. Eco-driving is defined as a driving method with various driving techniques to save fuel economy. The eco-driving method has been promoted to the common drivers as well as the drivers of carriers. Additionally, there are many researches about improvement of fuel efficiency and CO₂ reduction. However, the eco-driving will have the reduction effect of CO₂ emission, the influence of the eco-driving on air pollutant emission such as NOx is not yet clear. In this study, the effect of the eco-driving on real-world emission has been analyzed using the diesel freight vehicle with the on-board measurement system.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

2012-10-23
2012-32-0061
The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

An Investigation on DME HCCI Engine about Combustion Phase Control using EGR Stratification by Numerical Analysis

2012-10-23
2012-32-0077
This work has been investigated the potential of in-cylinder EGR stratification for reducing the pressure rise rate of DME HCCI engines, and the coupling of both thermal stratification and fuel stratification. The numerical analyses were done by using five-zone version of CHEMKIN-II kinetics rate code, and kinetic mechanics for DME. The effects of inert components were used for the presence of EGR in calculation. Three cases of EGR stratification were tested on both thermal stratification and fuel stratification at the fixed initial temperature, pressure and fueling rate at BDC. In order to explore the appropriate stratification of EGR, EGR width was employed from zero to thirty percent. Firstly, EGR homogeneity case which means EGR width zero was examined. Secondly, EGR is located densely in hotter zone for combining with thermal stratification or in richer zone for a combination with fuel stratification. Lastly, the case was judged inversely with the second case.
Journal Article

A Computational Study of the Combined Effects of EGR and Boost Pressure on HCCI Autoignition

2012-10-23
2012-32-0076
This study computationally investigates the combined effects of EGR and boost pressure on HCCI autoignition using iso-octane, PRF50 and n-heptane. The computations were conducted using the single-zone model of CHEMKIN included in CHEMKIN-PRO with detailed chemical-kinetics mechanisms for iso-octane, PRF and n-heptane from Lawrence Livermore National Laboratory (LLNL). To better reproduce the state of EGR addition in real engine, the EGR composition is determined after several combustion cycles under the constant amount of fuel. All data points were acquired with a CA50 of 5°CA aTDC by adjusting initial temperature to remove the effect of combustion phasing, which can influence on HCCI autoignition from any effect of the EGR and boost pressure themselves. The results show that EGR increases the burn duration and reduces the maximum pressure-rise rate with lower peak of maximum heat-release rates for all fuels even for a boost pressure, which accelerates a HCCI autoignition propensity.
Journal Article

A Computational Study of the Effects of EGR and Intake-Pressure Boost on DME Autoignition Characteristics over Wide Ranges of Engine Speed

2014-04-01
2014-01-1461
This study has been computationally investigated how the DME autoignition reactivity is affected by EGR and intake-pressure boost over various engine speed. CHEMKIN-PRO was used as a solver and chemical-kinetics mechanism for DME was utilized from Curran's model. We examined first the influence of EGR addition on autoignition reactivity using contribution matrix. Investigations concentrate on the HCCI combustion of DME at wide ranges of engine speeds and intake-pressure boost with EGR rates and their effects on variations of autoignition timings, combustion durations in two-stage combustion process in-detail including reaction rates of dominant reactions involved in autoignition process. The results show that EGR addition increases the combustion duration by lowering reaction rates.
Technical Paper

Simulation Study of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Propane

2014-04-01
2014-01-1104
A simulation study was conducted to examine the transition from SI combustion to HCCI combustion in a two-stroke free piston engine fuelled with propane. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. The dynamic model included an analysis of the piston motion, based on Newton's second law. The linear alternator model included an analysis of electromagnetic force, which was considered to be a resistance force for the piston motion. The thermodynamic model was used to analysis thermodynamic processes in the engine cycle, including scavenging, compression, combustion, and expansion processes. Therein, the scavenging process was assumed to be a perfect process. These mathematical models were combined and solved by a program written in Fortran.
Technical Paper

Influence of Compression Speed on HCCI Ignition and Combustion

2011-08-30
2011-01-1779
In HCCI Engine, the HCCI combustion characteristics come under the influence of change of compression speed corresponding to the engine speed. The purpose of this study is to investigate mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was showed. And then, in order to clarify the mechanism of influence of engine speed, results of kinetic computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix.
Technical Paper

An Investigation of the Potential of EGR stratification for Reducing Pressure Rise Rate in HCCI Combustion by using Rapid Compression Machine

2011-08-30
2011-01-1762
HCCI (Homogeneous Charge Compression Ignition) engine is able to achieve low NOx and particulate emissions as well as high efficiency. However, its operation range is limited by the knocking at high load, which is the consequence of excessively rapid pressure rises. It has been suggested that making thermal or fuel inhomogeneities can be used to solve this problem, since these inhomogeneities have proved to create different auto-ignition timing zones. It has also been suggested that EGR (Exhaust Gas Recirculation) has a potential to reduce pressure rise rate. But according to a past report, it was concluded that under the same fueling ratio and CA50 with different initial temperature and EGR ratio, the maximum PRR is almost constant. The purpose of this study is to investigate the fundamental effects of EGR. First, I considered EGR homogeneous charge case. In this case, the effects of EGR and its components like CO₂, H₂O or N₂ on HCCI combustion process is argued.
Technical Paper

Influence of Pilot Injection on Combustion Characteristics and Emissions in a DI Diesel Engine Fueled with Diesel and DME

2011-08-30
2011-01-1958
This work experimentally investigates how the dwell time between pilot injection and main injection influences combustion characteristics and emissions (NOx, CO, THC and Smoke) in a single-cylinder DI diesel engine. Additionally, results from diesel injection are compared with those shown in dimethyl ether (DME) injection under the identical injection strategy to demonstrate the sensitivity of the combustion characteristics and emissions to changes of the fuel type. Two fuel injection systems are applied for this experiment due to the differences of fuel characteristic with regard to physical and chemical properties. The injection strategy is accomplished by varying the dwell time (10°CA, 16°CA and 22°CA) between injections at five main injection timings (-4°CA aTDC, -2°CA aTDC, TDC, 2°CA aTDC and 4°CA aTDC). It was found that pilot injection offers good potential to lower the heat-release rate with reduced pressure traces regardless of the dwell time between injections and fuel type.
Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

2013-10-15
2013-32-9069
This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.
Technical Paper

A Study of Fuel and EGR Stratification to Reduce Pressure-Rise Rates in a HCCI Engine

2013-10-15
2013-32-9070
Problem of HCCI combustion is knocking due to a steep heat release by the ignition that is occurred in each local area at the same time. It is considered that dispersion of auto-ignition timing at each local area in the combustion chamber is necessary to prevent this problem. One of technique of this solution is to make thermal stratification. It could be made by using two-stage ignition fuel, which has large heat release at low temperature reaction. Dispersion of fuel concentration leads to difference of temperature histories while combustion phasing is dispersed at each local area. Also, EGR gas stratification could make difference of temperature histories at each local area because of that of the characteristics. This study examines the effect of mixing stratification by stratifying the charge of fuel and CO2. A single-cylinder engine equipped with optical access was used in experiments, and numerical analysis was executed.
Technical Paper

Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines Based on Multi-Zone Modeling and Experiments by using RCM

2013-10-15
2013-32-9083
The charge stratification has been thought as one of the ways to reduce the sharp pressure rises of HCCI combustion. The objective of this study is to evaluate the potential of equivalence ratio, initial temperature, and EGR gas stratifications for reducing pressure-rise rate of HCCI combustion. Using rapid compression machine, the stratified pre-mixture is charged, and compressed to analyze the change of in-cylinder gas pressure and temperature traces during compression process. Based on the experiment results, numerical calculations by CHEMKIN are conducted to more specifically analyze the potential of equivalence ratio, initial temperature, and EGR gas stratifications on the reduction of pressure rise rate. Multi-zone model is used to simulate the thermal stratification, fuel stratification and EGR gas stratification of in-cylinder charge as like real engine.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
X