Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System

2011-04-12
2011-01-0896
The objective of this study is to develop a practical technique to achieve HCCI operation with wide operation range. To attain this objective, the authors previously proposed the blowdown supercharge (BDSC) system and demonstrated the potential of the BDSC system to extend the high load HCCI operational limit. In this study, experimental works were conducted with focusing on improvement of combustion stability at low load operation and the reduction in cylinder to cylinder variation in ignition timing of multi-cylinder HCCI operation using the BDSC system. The experiments were conducted using a slightly modified production four-cylinder gasoline engine with compression ratio of about 12 at constant engine speed of 1500 rpm. The test fuel used was commercial gasoline which has RON of 91. To improve combustion stability at low load operation, the valve actuation strategy for the BDSC system was newly proposed and experimentally examined.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Journal Article

Very Lean and Diluted SI Combustion Using a Novel Ignition System with Repetitive Pulse Discharges

2009-11-03
2009-32-0119
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action is successfully applied to an ignition system of a small gasoline internal combustion engine. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges is investigated as an alternative to a conventional spark ignition system. The present study focuses on the extension of the operational limits for lean and diluted combustion using the repetitive nanosecond pulse discharges. First, in order to investigate the flame kernel formation process when the repetitive nanosecond pulse discharges are used, the initial flame kernel is observed using Schlieren photography with a high speed camera. As a result, the flame kernel generated by repetitive pulse discharges is larger than by a conventional ignition system.
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Journal Article

A Study of Newly Developed HCCI Engine With Wide Operating Range Equipped With Blowdown Supercharging System

2011-08-30
2011-01-1766
To extend the operating range of a gasoline HCCI engine, the blowdown supercharging (BDSC) system and the EGR guide were developed and experimentally examined. The concepts of these techniques are to obtain a large amount of dilution gas and to generate a strong in-cylinder thermal stratification without an external supercharger for extending the upper load limit of HCCI operation whilst keeping dP/dθmax and NOx emissions low. Also, to attain stable HCCI operation using the BDSC system with wide operating conditions, the valve actuation strategy in which the amount of dilution gas is smaller at lower load and larger at higher load was proposed. Additionally to achieve multi-cylinder HCCI operation with wide operating range, the secondary air injection system was developed to reduce cylinder-to-cylinder variation in ignition timing. As a result, the acceptable HCCI operation could be achieved with wide operating range, from IMEP of 135 kPa to 580 kPa.
Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
Journal Article

Analysis of Port Injected Fuel Spray Under Cross Wind Using 2-D Measurement Techniques

2010-09-28
2010-32-0064
In a motorcycle gasoline engine, the port fuel injection system is rapidly spread. Compared to an automotive engine, the injected fuel does not impinge on the intake valve due to space restriction to install the injector. In addition, as the air flow inside the intake pipe may become very fast and has large cycle-to-cycle variation, it is not well found how the injector should be installed in the intake pipe to prepare “good” fuel-air mixture inside the intake pipe. In this study, the formation process of the fuel-air mixture is measured by using ILIDS system that is a 2-D droplets' size and velocity measurement system with high spatial resolution. Experiments with changing conditions such as flow speed and injection direction are carried out. As a result, the effects of injection direction, ambient flow speed and wall roughness on the fuel-air mixture formation process was examined, considering the three conditions of cold start, light to medium load operation and high load operation.
Journal Article

Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0761
In this study, in order to clarify the mechanism of preignition occurrence in highly boosted SI engine at low speed and high load operating conditions, directphotography of preignition events and light induced fluorescence imaging of lubricant oil droplets during preignition cycles were applied. An endoscope was attached to the cylinder head of the modified production engine. Preigntion events were captured using high-speed video camera through the endoscope. As a result, several types of preignition sources could be found. Preignition caused by glowing particles and deposit fragments could be observed by directphotography. Luminous flame was observed around the piston crevice area during the exhaust stroke of preignition cycles.
Technical Paper

Investigation and Improvement of LSPI Phenomena and Study of Combustion Strategy in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0756
LSPI is an important issue to enable and enhance the effect of downsizing in SI engines. Experimental work was carried out by using 4 cylinder turbocharged gasoline engine, attaching the extra supercharger to get a higher boost pressure. Many parameters of driving condition, engine specification and lubricants were studied and some of them were extracted as the major items which affect the possibility of LSPI. Coolant temperature and Calcium (Ca) additive to lubricant had strong effect on the frequency of LSPI. Combustion strategy of strong miller cycle and LPEGR were also studied and compared in very high BMEP condition. Finally IMEPg of 3MPa at 1500rpm was achieved by using a single cylinder test engine equipped with 2-stage mechanically supercharged intake system.
Technical Paper

Numerical Simulation to Understand the Cause and Sequence of LSPI Phenomena and Suggestion of CaO Mechanism in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0755
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

Numerical Analysis of Combustion and Flow Inside a Small Rotary Engine for Developing an Unmanned Helicopter

2007-10-30
2007-32-0098
For a disaster relief and automatic inspections, an unmanned helicopter is strongly expected. To develop this, a very high power density source is required. A Wankel-type rotary engine can be the best candidate for the power source. In this study, the development of a very small rotary engine with a displacement of 30 cc is targeted. In order to improve the combustion efficiency, gas exchange and stable ignition, a multi dimensional simulation inside the combustion chamber was carried out. At first, the effect of volumetric efficiency on the maximum power is mentioned. Secondly, the effect of scavenging efficiency is discussed. Thirdly, a blow off through a plug hole is described. The position of plug hole was found important to reduce the blow off amount. Finally, the effect of combustion speed on the engine performance is predicted. As a result, the proposed design will be tested using a proto-type engine.
Technical Paper

Effect of Active Piston-Movement Control on Thermal Efficiency in Different Heat Release Profiles

2005-10-12
2005-32-0067
In order to improve thermal efficiency of spark ignition engines, the authors have studied means to improve degree of constant volume. The ideal Otto cycle realizes the maximal degree of constant volume with an instantaneous combustion at TDC. However, it is actually impossible to achieve instantaneous combustion as the combustion speed is limited. Thereby, the authors thought of an idea to increase degree of constant volume. That is to make the piston speed slow during combustion period by active piston-movement control, allowing more time for combustion. As a result, degree of constant volume was improved, but indicated thermal efficiency, estimated by integrating P-V diagram, was deteriorated. A longer expansion stroke was found to keep a longer period of high temperature and then, heat loss increased, leading to a decrease in indicated work.
Technical Paper

Measurement of the Local Gas Temperature at Autoignition Conditions Inside the Combustion Chamber Using a Two-Wire Thermocouple

2006-04-03
2006-01-1344
The phenomenon of autoignition is an important aspect of HCCI and knock, hence reliable information on local gas temperature in a combustion chamber must be obtained. Recently, several studies have been conducted by using laser techniques such as CARS. It has a high spatial resolution, but has proven difficult to apply in the vicinity of combustion chamber wall and requires special measurement skills. Meanwhile, a thermocouple is useful to measure local gas temperature even in the vicinity of wall. However, a traditional one-wire thermocouple is not adaptable to measure the in-cylinder gas temperature due to slow response. The issue of response can be overcome by adopting a two-wire thermocouple. The two-wire thermocouple is consisted of two fine wire thermocouples with different diameter hence it is possible to determine the time constant using the raw data from each thermocouple.
Technical Paper

Effect of the Ratio Between Connecting-rod Length and Crank Radius on Thermal Efficiency

2006-11-13
2006-32-0098
In reciprocating internal combustion engines, the Otto cycle indicates the best thermal efficiency under a given compression ratio. To achieve an ideal Otto cycle, combustion must take place instantaneously at top dead center, but in fact, this is impossible. Meanwhile, if we allow slower piston motion around top dead center, combustion will be promoted at that period; then both the in-cylinder pressure and degree of constant volume will increase, leading to higher thermal efficiency. In order to verify this hypothesis, an engine with slower piston motion around top dead center, using an ideal constant volume combustion engine, was built and tested. As anticipated, the degree of constant volume increased. However, thermal efficiency was not improved, due to increased heat loss.
Technical Paper

Investigation of Breakup Modeling of a Diesel Spray by Making Comparisons with 2D Measurement Data

2007-07-23
2007-01-1898
In this study, the characteristics of diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method on a 2D plane to evaluate the droplet breakup modeling. In numerical analysis, DDM (Discrete Droplet Model) was employed with sub-models such as droplet breakup, droplet drag force and turbulence. Experiments have been performed with an accumulator type unit-injector system and a constant-volume high-pressure vessel under the condition of quiescent ambient gas. The injection pressure and ambient gas pressure were set up to 100 MPa and 0.1 / 1 MPa, respectively. The nozzle orifice diameter was 0.244 mm with a single hole. The measurement region was chosen at 40 ∼ 60 mm from the nozzle-tip. Numerical analysis of diesel sprays was conducted and the results were compared to the measured results.
Technical Paper

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Ignition Characteristics of Premixed Hydrocarbon-Air Mixtures

2008-04-14
2008-01-0468
A newly developed small-sized IES (inductive energy storage) circuit with static induction thyristor at turn-off action was successfully applied to an ignition system. This IEC circuit can generate repetitive nanosecond pulse discharges. In this paper, the ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. The experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. In conclusions, the ignition system using repetitive nanosecond pulse discharges was found to extend lean flammability limits compared with conventional spark ignition systems. In addition, the ignition system using repetitive nanosecond pulse discharges could shorten ignition delay time.
Journal Article

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Application to a SI Engine

2009-04-20
2009-01-0505
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. Experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. The ignition system using repetitive nanosecond pulse discharges was found to improve inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses. The authors seek for the mechanisms for improving the inflammability in more detail to optimize ignition system, and verify the effectiveness of IES circuit in EGR condition, for real engine use.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

2009-04-20
2009-01-1502
The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
X