Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Monitoring the Progression of Micro-Pitting in Spur Geared Transmission Systems Using Online Health Monitoring Techniques

2012-03-16
Micro-pitting is a fatigue effect that occurs in geared transmission systems due to high contact stress, and monitoring its progression is vital to prevent the eventual failure of the tooth flank. Parameter signature analysis has been successfully used to monitor bending fatigue failure and advanced phases of gear surface fatigue failure such as macro-pitting and scuffing. However, due to modern improvements in steel production the main cause of gear contact fatigue failure can be attributed to surface micro-pitting rather than sub-surface phenomena. Responding to the consequent demand to detect and monitor the progression of micro-pitting, this study experimentally evaluated the development of micro-pitting in spur gears using vibration and oil debris analysis. The paper presents the development of an online health monitoring system for use with back-to-back gear test rigs.
Video

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-05-29
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Collection

Fatigue Research and Applications, 2014

2014-04-01
This technical paper collection covers recent fatigue research, analysis, analytical tools development, and novel applications of fatigue technology in the ground vehicle industry.
Collection

Fatigue Modeling/Testing & CAE Durability Analysis, 2015

2015-04-14
This collection of technical papers focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry.
Collection

Fatigue Modeling/Testing & CAE Durability Analysis, 2017

2017-03-28
This collection of papers focus on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

The Effect of Current Mode on the Crack and Failure in the Resistance Spot Welding of the Advanced High-Strength DP590 Steel

2020-09-09
Abstract The causes of failure due to cracking in the resistance spot welding of the advanced high-strength steels dual-phase 590 (DP590) were investigated using scanning electron microscopy (SEM), optical microscopy, and the tensile-shear test. The results showed that by increasing the current amount, the formation of the melting zone occurred in the heat-affected zone, leading to the cracking in this area, reducing the tensile strength and decreasing the mechanical properties; the initiation and growth of cracking and failure in this region also happened. In the heat-affected zone, by increasing the current amount with the softening phenomenon, the recrystallized coarse grains also occurred, eventually resulting in the loss of mechanical properties. The results of the tensile-shear test also indicated that by increasing the current up to 12 kA, the strength was raised, but the ductility was reduced.
Journal Article

Design and Analysis of a Formula SAE Vehicle Chain Sprocket under Static and Fatigue Loading Conditions

2021-04-13
Abstract In this study, an attempt is made to deduce the number of teeth in the driven sprocket of a Formula SAE (FSAE) car using Optimum Lap software based on track run simulation of the car, which comes out to be 51 teeth. The sprocket material was selected as Aluminum Alloy AL-7075 T6 because of its strength-to-weight ratio. In addition to it, the generative design strategy by Fusion-360 was utilized to automatically engender the slotted sprocket design on the ground of stress induced on it during operation. Furthermore, the design was verified virtually carrying out static structural and fatigue analysis under the worst-case scenario in CAE software. The overall weight reduction achieved was around 45%. Furthermore, the center-to-center distance between the sprockets and the number of chain links required were also calculated on the basis of space constraints and the wrap angle of the sprocket.
Journal Article

Comparative Linear Analysis of Alternative Layouts of Heavy Goods Vehicles

2009-10-06
2009-01-2860
This paper presents comparative analyses of steering wheel responses of various layouts for heavy goods vehicles, including rigid and articulated configurations. Newton and Lagrange techniques have been adopted to formulate and verify the generalized linear model for multi-axle rigid and articulated vehicles. The model is then used to simulate, analyze and compare steering angle response of a variety of commercially available vehicles. The study includes the analyses of steady state response and dynamic behavior for different layouts in terms of axle positions, number of axles and multiple steered axles.
Journal Article

Analysis of Ride Vibration Environment of Soil Compactors

2010-10-05
2010-01-2022
The ride dynamics of typical North-American soil compactors were investigated via analytical and experimental methods. A 12-degrees-of-freedom in-plane ride dynamic model of a single-drum compactor was formulated through integrations of the models of various components such as driver seat, cabin, roller drum and drum isolators, chassis and the tires. The analytical model was formulated for the transit mode of operation at a constant forward speed on undeformable surfaces with the roller vibrator off. Field measurements were conducted to characterize the ride vibration environments during the transit mode of operation. The measured data revealed significant magnitudes of whole-body vibration of the operator-station along the vertical, lateral, pitch and roll-axes. The model results revealed reasonably good agreements with ranges of the measured vibration data.
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
Journal Article

Locally Austempered Ductile Iron (LADI)

2010-04-12
2010-01-0652
There are numerous component applications that would benefit from localized austempering (heat treating only a portion of the component) for either improved wear properties or fatigue strength. Currently available methods for “surface austempering” of ductile iron are often expensive and not as well controlled as would be desired. This study was undertaken to find a better process. Locally Austempered Ductile Iron (LADI) is the result of those efforts. LADI is a surface hardening heat treatment process that will produce a localized case depth of an ausferrite microstructure (ADI) in a desired area of a component. This process has been jointly developed by Ajax Tocco Magnethermic Corporation (ATM) and Applied Process, Inc.- Technologies Division (AP) with support and collaboration from ThyssenKrupp Waupaca, Inc. (TKW). This paper describes the outcome of using this patent pending process (US #65/195,131).
Journal Article

Ferrous High-Temperature Alloys for Exhaust Component Applications

2010-04-12
2010-01-0654
There is a wide spectrum of cast ferrous heat resistant alloys available for exhaust component applications such as exhaust manifolds and turbocharger housings. Generally speaking, the ferrous alloys can be divided into four groups including: ferritic cast irons, austenitic cast irons, ferritic stainless steels, and austenitic stainless steels. Selection of a suitable alloy usually depends on a number of material properties meeting the requirements of a specific application. Ferritic cast irons continue to be an important alloy for exhaust manifolds and turbocharger housings due to their relatively low cost. A better understanding of the alloying effects and graphite morphologies of ferritic cast irons are discussed and their effect on material behavior such as the brittleness at medium temperatures is provided. The nickel-alloyed austenitic cast irons, also known as Ni-resist, exhibit stable structure and improved high-temperature strength compared to the ferritic cast irons.
Journal Article

Preliminary Evaluation of a Low-Cost Cast Iron for Exhaust Manifold and Turbocharger Applications

2010-04-12
2010-01-0657
Exhaust manifolds and turbocharger housings require good elevated temperature strength, good resistance to thermal fatigue and a stable microstructure. High silicon ductile iron, high silicon-molybdenum ductile iron and Ni-resist (a high nickel ductile iron) are the cast materials of choice. Unfortunately, molybdenum and nickel are expensive. In this study, a lower cost, high silicon-titanium, compacted graphite iron was developed and compared to high silicon ductile iron and higher cost, high silicon-molybdenum ductile iron. Room and elevated temperature strength data is presented.
Journal Article

Fracture Behavior of Typical Structural Adhesive Joints Under Quasi-Static and Cyclic Loadings

2010-04-12
2010-01-0969
Structural adhesive joints are expected to retain integrity in their entire service-life that normally involves cyclic loading concurrent with environmental exposure. Under such a severe working condition, effective determination of fatigue life at different temperatures is crucial for reliable joint design. The main goal of this work was thus defined as evaluation of fatigue performance of adhesive joints at their extreme working temperatures in order to be compared with their fracture properties under static loading. A series of standard double-cantilever-beam (DCB) specimens have been bonded by three structural 3M epoxy adhesives selected from different applications. The specimens were tested under monotonic and cyclic opening loads (mode-I) in order to evaluate the quasi-static and fatigue performances of selected adhesives at room temperature, 80°C and -40°C.
Journal Article

Fatigue Behavior of Dissimilar 5754/7075 and 7075/5754 Spot Friction Welds in Lap-Shear Specimens

2010-04-12
2010-01-0961
Fatigue behavior of spot friction welds or friction stir spot welds in lap-shear specimens of dissimilar aluminum 5754-O and 7075-T6 sheets is investigated based on experimental observations and two fatigue life estimation models. Optical micrographs of the 5754/7075 and 7075/5754 welds after failure under cyclic loading conditions are examined to understand the failure mechanisms of the welds. The micrographs show that the 5754/7075 welds mainly fail from the kinked fatigue crack through the lower sheet thickness. Also, the micrographs show that the 7075/5754 welds mainly fail from the kinked fatigue crack through the lower sheet thickness and from the fracture surface through the upper sheet thickness.
Journal Article

Development of the Next-generation Steering System (Development of the Twin Lever Steering System)

2010-04-12
2010-01-0993
With the objective of establishing the ultimate steering operation system for drivers, we developed, based on bioengineering considerations, the Twin Lever Steering (TLS) system which mimicks the bi-articular muscles, as shown in Fig. 1 . The bioengineering advantages are as follows: (1) force can be exerted more easily, (2) the steering can be accomplished quickly, (3) the positioning can be done accurately, and (4) the burden on the driver can be reduced (less fatigue). The advantages of the vehicle in terms of its motion are as follows: (1) the line-traceability is improved, (2) the drift control is improved, (3) the lane-change capability is improved, and (4) the lap time and stability are improved. We would like to report on these advantages of the TLS system from a bioengineering standpoint, and also describe the results of some verification test results obtained from vehicles equipped with this new steering system.
Journal Article

Crankshaft Peak Firing Pressure Bearing Capability Enhancement

2010-05-05
2010-01-1527
To uprate a 6-Cylinder In-line engine from 123 kW to 165 kW in power and upgrade the emission from Euro-2 to Euro-3 it was required to go for higher peak-firing pressures (PFP). The capability of Engine's Crankshaft to withstand the PFP was increased from 125 bar to 150 bar, maintaining the same cylinder centre distance. A crank-train model was used to achieve the required crankshaft strength for infinite fatigue life. The three aspects of crankshaft design, namely, crank strength, bearing selection, journal-pin lubrication and torsional vibration were considered during the design stage. The strength to withstand 150 bar PFP was achieved by increasing the crank web-thickness. To maintain the same cylinder centre distance, crankpin and main-journal lengths were reduced. Increased throw stiffness was achieved by increasing the crankpin diameter to improve crankshaft torsional behaviour.
Journal Article

Contact Fatigue Wear Evaluation of Thrust Rolling Bearings Lubricated With Greases With Molybdenum Disulfide Or Graphite

2010-05-05
2010-01-1546
The wear of thrust 51100 rolling bearings was investigated and their dissipative responses in a bench test rig were associated to their heating, elastic energy of mechanical vibration and Sound Pressure Level [dB], regarding two greases, both from the same supplier, being one with graphite and the other with Molybdenum Disulfide. The samples were commercially acquired and submitted to a normal load of 450±5N and 3100±30 CPM, determined after the screening tests. Four variables were measured: temperature [K], electrical power [W], global velocity vibration [mm/s] and Sound Pressure Level [dB]. After 106 cycles, the tracks were analyzed by Optical Microscopy. The bearings lubricated with the grease with graphite showed different responses in relation to the ones lubricated with MoS2 thrust bearings. The signal of the signatures and the damage morphology are presented and discussed.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
X