Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Particulate Reinforced Aluminum Matrix Composites Obtained By Indirect Squeeze-Casting

1996-04-01
91A115
Indirect squeeze casting technology is one of the most attractive fabrication techniques of near net shape components constituted by aluminum matrix composite (AMC) materials. AMCs reinforced with both continuous and discontinuous ceramic elements have been mainly produced by infiltration of porous preforms. Nevertheless, a further promising production route offered by this technique is given by the possibility to employ ingots of pre-reinforced aluminum alloys containing ceramic particles (silicon carbide or alumina); ingots are remelted and, under suitable operative conditions, high quality composite castings of simple and complex shape are produced by squeeze casting. The present paper describes the results of an extensive experimental work carried out by Alures-Centro Tecnico Porcessi on a pilot plant scale employing a vertical squeeze casting machine with a clamping force of 315 tons.
Technical Paper

Thermomechanical Behavior and Wear Resistance of Whisker Or Particle Reinforced Ceramics

1996-04-01
91A107
Ceramic composite materials have been intensively studied during the last years. Particles and whisker reinforcement have shown the simultaneous advantage to allow the preparation of composite materials by conventional processing and to lead, when under optimum conditions, to dramatic toughening and strengthening. Since wear resistance of brittle material have been shown to be related to both hardness and toughness, composite materials with improved were resistance have been developed for cutting tools or bearing applications. However the mechanism responsible for toughening is of major important for wear resistance effectiveness. We have therefore reviewed the main mechanisms before presenting some examples of composites materials for wear resistance applications.
Technical Paper

Reliability Improvement of Automotive Components By Surface Modification

1996-04-01
91A104
In this paper, several detailed studies on the surface properties of coatings are explained in order to make function of surface modification become more effective. As surface coatings, eletroless nickel plating, organic thin film, nitriding and antireflection coating by ultra fine particles are examined. Discussion of optimum production conditions and surface conditions for each coating is introduced.
Technical Paper

Evaluation and Analysis of Strength of All-Ceramic Swirl Chamber for Diesel Engines

1988-03-01
871205
An all-ceramic swirl chamber has been developed and analyses and evaluations concerning the strength of silicon nitride ceramic (Si3N4) have been performed with a view to using it for the entire internal wall surface of the swirl chamber. The strength characteristics of Si3N4 and their effect and variation have been determined. On the basis of measurements and analyses of thermal stresses, assembling stresses, etc., investigation of the most suitable construction and assembling methods to reduce load stresses on ceramic, and various kinds of duration tests, the swirl chamber has been confirmed to have the required durability. This engine was found to comply with the 1987 U.S. diesel particulate regulation.
Technical Paper

Calculating Partial Contribution Using Component Sensitivity Values: A Different Approach to Transfer Path Analysis

1999-05-17
1999-01-1693
Transfer Path Analysis (TPA) is a widely used methodology in Noise, Vibration and Harshness (NVH) analysis of motor vehicles. Either it is used to design a vehicle from scratch or it is applied to root cause an existing NVH problem, TPA can be a useful tool. TPA analysis is closely related to the concept of partial contribution. The very basic assumption in TPA is that the summation of all partial contributions from different paths constitutes the total response (which could be either tactile or acoustic). Another popular concept in NVH analysis of vehicles is the component sensitivity. Component sensitivity is a measure of how much the response changes due to a change in one of the components of the system, i.e., the thickness of a panel or elastic rate of an engine mount. Sensitivity rates are more popular among CAE/Simulation community, simply because they are reasonably easy to calculate using mathematical models.
Technical Paper

Effect of High Squish Combustion Chamber on Simultaneous Reduction of NOx and Particulate from a Direct-Injection Diesel Engine

1999-05-03
1999-01-1502
In this study it is tried to reduce NOx and particulate emissions simultaneously in a direct injection diesel engine based on the concept of two-stage combustion. At initial combustion stage, NOx emission is reduced with fuel rich combustion. At diffusion combustion stage, particulate emission is reduced with high turbulence combustion. The high squish combustion chamber with reduced throat diameter is used to realize two-stage combustion. This combustion chamber is designed to produce strong squish that causes high turbulence. When throat diameter of the high squish combustion chamber is reduced to some extent, simultaneous reduction of NOx and particulate emissions is achieved with less deterioration of fuel consumption at retarded injection timing. Further reduction of NOx emission is realized by reducing the cavity volume of the high squish combustion chamber. Analysis by endoscopic high speed photography and CFD calculation describes the experimental results.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Experimental and Simulation Approaches to Understanding Soot Aggregation

1999-05-03
1999-01-1516
During 1998, the US Federal authority introduced a requirement for vehicles powered by heavy duty diesel engines that NOx emissions shall be less than 4 g/bhp.h. This represents a 20% reduction over current levels and has prompted significant further hardware changes. As a result of these increasingly tighter NOx emission constraints, soot loading of diesel engine lubricants - due to retarded fuel injection, is becoming an ever more significant issue in crankcase lubricant formulation. For this reason, increased understanding is required of the mechanism of soot particle aggregation and resultant aggregate morphology - together with the likely consequences for the performance of soot-laden lubricants, for viscosity increase, filter blocking, sludging and (directly or indirectly) - soot-induced wear. We describe here a combined experimental and simulation approach to screening formulated lubricants and characterising soot aggregate structures.
Technical Paper

Particulate Emissions from a Direct-Injection Spark-Ignition (DISI) Engine

1999-05-03
1999-01-1530
The numbers, sizes, and derived mass emissions of particles from a production DISI engine are examined over a range of engine operating conditions. Particles are sampled directly from the exhaust pipe using heated ejector pump diluters. The size distributions are measured using a scanning mobility particle sizer. The numbers and sizes of the emitted particles are reported for stratified versus homogeneous operation and as a function of fuel injection timing, spark timing, engine speed, and engine load. The principal finding is that particle number emissions increase by about a factor of 10 - 40 going from homogeneous to stratified charge operation. The particulate emissions exhibit a strong sensitivity to injection timing; generally particle number and volume concentrations increase steeply as the injection timing is retarded, except over a narrow portion of the range where the trend reverses.
Technical Paper

The Pivotal Role of Crankcase Oil in Preventing Soot Wear and Extending Filter Life in Low Emission Diesel Engines

1999-05-03
1999-01-1525
In order to meet EPA's emission requirements for 1999 diesel engines, soot levels in the crankcase oil will increase significantly due to retarded timing to lower NOx. This study uses the Cummins M11 engine at soot levels up to 9% in the crankcase oil to demonstrate how oils can be formulated to prevent valve train wear, extend filter life, and maintain oil pumpability. The study includes the oil formulation development and the evaluation of API CG-4/SJ oils at 4.5% soot and API CH-4/SJ oils at 9% soot. In addition it includes X-Ray Photoelectron Spectroscopy (XPS) for surface film analysis and Surface Optical Profilometry and Scanning Electron Microscopy (SEM) of the valve train valve-bridges and rocker pads to determine the mechanism of failure. The oil's low temperature rheology as it affects oil pumpability is defined by Mini Rotary Viscometer (MRV TP-1), Scanning Brookfield Test (SBT), and Cold Cranking Simulator (CCS).
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

A Phenomenological Model for Accurate and Time Efficient Prediction of Heat Release and Exhaust Emissions in Direct-Injection Diesel Engines

1999-05-03
1999-01-1535
A phenomenological multi-zone model for prediction of heat release and exhaust emissions in DI Diesel engines is developed in an attempt to diminish the common trade-off between model accuracy and computing efficiency. This task is achieved by uncoupling the kinetic emission models from the detailed calculations of spray formation and heat release, which allows to substantially reduce the number of zones in that the kinetics of NOx- and soot-formation have to be solved. The predicted results of the model are compared with experimental data obtained from a turbo-charged, high-speed Diesel engine. The results for heat release and pressure histories as well as the estimated nitric oxide emissions are in good agreement with the test data, indicating that an appropriate simplification of the complex combustion process has been established. The soot model is capable of predicting trends, but there are further improvements necessary in order to produce quantitatively correct results.
Technical Paper

Exhaust Particulate Matter Emissions from In-Use Passenger Vehicles Recruited in Three Locations: CRC Project E-24

1999-05-03
1999-01-1545
FTP-UDDS (urban dynamometer driving schedule) exhaust particulate matter (PM) emission rates were determined for 361 light-duty gasoline (LDGV) and 49 diesel passenger vehicles ranging in model year (MY) from 1965 to 1997. LDGVs were recruited into four MY categories. In addition, special effort was made to recruit LDGVs with visible smoke emissions, since these vehicles may be significant contributors to the mobile source PM emission inventory. Both light and heavy-duty diesels where included in the passenger diesel test fleet, which was insufficient in size to separate into the same MY categories as the LDGVs. Vehicles were tested as-received in three areas: Denver, Colorado; San Antonio, Texas; and the South Coast Air Quality Management District, California. The average PM emission rates were 3.3, 79.9, 384 and 558 mg/mi for 1991-97 MY LDGVs, pre-1981 LDGVs, smoking LDGVs and the diesel vehicles, respectively.
Technical Paper

Effects of Fuel Properties on Combustion and Emission Characteristics of a Direct-Injection Diesel Engine

2000-06-19
2000-01-1851
This study investigates the effects of fuel properties on combustion characteristics and emissions such as NOx, smoke, THC and particulates in a direct-injection diesel engine. Fuel properties, such as cetane number and aromatic content, are varied independently in the experiments to separate their effects. The engine tests are carried out at steady operation with changed load, injection timing and injection pressure. The results show that reducing cetane number results in the increase of NOx and decrease of particulate emission at high load. This is because the low cetane number fuel has the long ignition delay and causes the high maximum heat release rate and the short combustion duration. However, high THC emission is produced at low load for the low cetane number fuel.
Technical Paper

EC-Diesel Technology Validation Program Interim Report

2000-06-19
2000-01-1854
ARCO has developed diesel fuel called Emission Control Diesel (EC-D) that results in substantially lower exhaust emissions compared to a typical California diesel fuel. EC-D has ultra-low sulfur content, low aromatics, and has a high cetane number. EC-D is produced from typical crude oil using a conventional refining process. Initial engine laboratory tests and vehicle tests indicated that EC-D reduced regulated emissions while maintaining fuel economy, compared to a typical California diesel fuel. Ultra-low sulfur diesel fuels such as EC-D may enable the widespread use of passive catalyzed particulate filters for both new and existing diesel engines. The use of catalyzed particulate filters could allow large reductions of particulate matter emitted from vehicles. A one-year technology validation program is being run to evaluate EC-D and catalyzed particulate filters using diesel vehicles operating in Southern California.
Technical Paper

Evaluation of Cetane Improver Effects on Regulated Emissions from a Passenger Car Equipped with a Common Rail Diesel Engine

2000-06-19
2000-01-1853
Experiments were carried out to evaluate the effects of 2-ethylhexyl nitrate and di-tertiary-butyl peroxide on the exhaust emissions from a vehicle equipped with a common rail diesel engine. A base fuel in compliance with European 2000 specifications was additized with the two cetane improvers. Additive concentrations were calculated to increase the cetane number by 6.1 points. Emissions were measured with and without the catalytic converter using the New European Driving Cycle (NEDC) test procedure. Both cetane improver additives have the same effect on emissions. Carbon monoxide (CO) and unburned hydrocarbons (HC) are reduced. Particulate matter (PM) after catalysts is not improved and nitrogen oxides (NOX) emissions increase slightly. Consumption remains unchanged. The cetane improver additives effect on HC and CO is maximum during the ECE cycle, when catalyst efficiency is low.
Technical Paper

Influence of Fuel Aromatics Type on the Particulate Matter and NOx Emissions of a Heavy-Duty Diesel Engine

2000-06-19
2000-01-1856
The influence of fuel aromatics type on the particulate matter (PM) and NOx exhaust emissions of a heavy-duty, single-cylinder, DI diesel engine was investigated. Eight fuels were blended from conventional and oil sands crude oil sources to form five fuel pairs with similar densities but with different poly-aromatic (1.6 to 14.6%) or total aromatic (14.3 to 39.0%) levels. The engine was tuned to meet the U.S. EPA 1994 emission standards. An eight-mode, steady-state simulation of the U.S. EPA heavy-duty transient test procedure was followed. The experimental results show that there were no statistically significant differences in the PM and NOx emissions of the five fuel pairs after removing the fuel sulphur content effect on PM emissions. However, there was a definite trend towards higher NOx emissions as the fuel density, poly-aromatic and total aromatic levels of the test fuels increased.
X