Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Lightweight Door Panel Made with Bio-Based Composite Material

2012-05-23
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends. Presenter Victor Nasreddine
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Standard

Impact Testing of Automated Vehicles

2021-05-11
WIP
J3255
Dynamic impact test represent various automotive collision conditions. The impact testing recommended practice is intended to recognize the capabilities of autonomous vehicles while at the same time recognizing the vehicle fleet into which they are introduced will consist of non-autonomous vehicles for a considerable period of time. The scope of the document is to cover the range of impact conditions expected taking into account the capabilities of the vehicle and the impact testing technology now available for performance evaluation including virtual and physical testing.
Journal Article

Vehicle Chassis, Body, and Seat Belt Buckle Acceleration Responses in the Vehicle Crash Environment

2009-04-20
2009-01-1246
For over 30 years, field research and laboratory testing has consistently demonstrated that proper utilization of a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards and SAE Recommended Practices set forth seat belt requirements to ensure proper buckle performance in accident conditions. Numerous analytical and laboratory studies have investigated buckle inertial release properties. Studies have repeatedly demonstrated that current buckle designs have inertial release thresholds well above those believed to occur in real-world crashes. Nevertheless, inertial release theories persist. Various conceptual amplification theories, coupled with high magnitude accelerations measured on vehicle frame components are used as support for these release theories.
Standard

Aero-Capable Ground Vehicle Impact Testing

2022-03-08
WIP
J3276
This document provides recommended practices for impact testing of ground vehicle that are also aero-capable. The scope characterizes recommended impact testing taking into account the unique design characteristics involved in aero-capable ground vehicle
Journal Article

Validation Study of a Generalized Minor Rear Vehicle Crash MADYMO Model Utilizing Real World Data

2009-06-09
2009-01-2264
A generalized MADYMO minor rear crash vehicle model with BioRIDII ATD was developed and validated using the mean response of previously published 12 km/h delta-V rear crash tests. BioRIDII simulation pelvis, thorax and head x-axis accelerations, as well as head y-axis angular acceleration, fell within corridors defining +/- one standard deviation of the mean BioRIDII crash test responses. Peak sagittal plane BioRIDII upper neck forces and moments in the simulation were on par with the mean values observed from the crash tests. After the model was validated for 12 km/h delta-V, the model was further exercised by performing simulations with (1) a Hybrid III 50th percentile occupant and (2) by reducing the pulse by 40% of its original value. Results indicate that this generalized minor rear crash model could be useful in accurately estimating occupant kinematics and kinetics in minor crashes up to at least 12 km/h delta-V as an alternative to expensive and time consuming crash testing.
Journal Article

Mechanical Performance of Circular AA6061-T6 Extrusions Under Axial Cutting Deformation

2011-04-12
2011-01-0022
Dynamic and quasi-static axial cutting of circular AA6061-T6 extrusions with variable instantaneous wall thickness in the axial direction was completed to investigate the capability of controlling the load/displacement responses of the extrusions. Circular specimens considered for this research had an original nominal wall thickness of 3.175 mm, an external diameter of 50.8 mm, and a tube length of 300 mm. Variations of the wall thickness were completed by material removal of the extrusions using a CNC machine. Specially designed cutters having a block height of 20 mm, a blade tip width of 1.0 mm and a blade shoulder width of 3.0 mm were employed to generate the axial cutting deformation mode. Either one or two cutters were selected to initiate a single or dual cutting deformation. A curved deflector with a profile radius of 50.8 mm was used to flare the cut petalled sidewalk and facilitate the cutting system.
Journal Article

The Effectiveness of Curtain Side Air Bags in Side Impact Crashes

2011-04-12
2011-01-0104
Accident data show that the head and the chest are the most frequently injured body regions in side impact fatal accidents. Curtain side air bag (CSA) and thorax side air bag (SAB) have been installed by manufacturers for the protection devices for these injuries. In this research, first we studied the recent side impact accident data in Japan and verified that the head and chest continued to be the most frequently injured body regions in fatal accidents. Second, we studied the occupant seating postures in vehicles on the roads, and found from the vehicle's side view that the head location of 56% of the drivers was in line or overlapped with the vehicle's B-pillar. This observation suggests that in side collisions head injuries may occur frequently due to contacts with the B-pillar. Third, we conducted a side impact test series for struck vehicles with and without CSA and SAB.
Journal Article

Influence of Vehicle Front End Design on Pedestrian Lower Leg Performance for SUV Class Vehicle

2011-04-12
2011-01-0084
Accident statistics shows pedestrian accident fatalities as one of the important concerns globally. In view of this, new test protocols for pedestrian safety have been drafted in regulation as well as in consumer group. Also as per new ENCAP requirements, pedestrian safety assessment is used as one of the four assessment criteria's (Adult protection, child safety, pedestrian safety, safety assist) in deciding the overall vehicle safety. Hence today importance of pedestrian safety is perceived as never before in vehicle development program. Basically pedestrian safety evaluation involves subsystem level (head form, upper leg form and lower leg form) impact tests representing human body parts, at specific region on test vehicle with injury limits to decide the severity of impact. In general these injuries are governed by vehicle styling, vehicle stiffness, hard points clearances from vehicle exterior like bonnet, bumper etc.
Journal Article

Identification of Object Impact Location and Bumper Stiffness Curve for Pedestrian Protection System

2011-04-12
2011-01-0083
A method for identification of object impact location and bumper stiffness curve is presented in this paper. The method calculates an offset distance of object impact based on intrusions obtained from three accelerometers mounted in the bumper fascia. The method also evaluates a center strength based on an absolute sum of acceleration. A characteristic line has been introduced in a two-dimensional domain consisting of intrusion-based offset and center strength. When test data are projected onto the characteristic line, an improved object impact location can be achieved. An intrusion curve over offset distance is obtained for impact tests striking at different locations with the same object and same speed. Then, a bumper stiffness curve can be identified by taking a reciprocal of the intrusion curve. This study shows a bumper stiffness curve can be used for an impact object classification for the pedestrian protection system.
Journal Article

Post-Impact Examination of HID Headlamps

2010-04-12
2010-01-0056
High-intensity discharge (HID) headlamps are increasingly being employed in place of incandescent headlamps for automotive forward light systems. While the post-impact analysis of incandescent bulbs and filaments to determine the power state at impact is a mature field, there is little information currently available in the literature that can be used to determine if an HID headlamp was powered at the time of impact. HID headlamps differ significantly both in architecture and operation compared to incandescent headlamps; the light is produced by passing electrical current through a gas and generating a luminous arc, rather than by resistive heating of an incandescent filament. Though the filament examination techniques often used by accident investigators cannot be directly applied to HID lamps, the unique features of these lamps provide opportunities for new methods. This paper presents the results of stationary impact tests performed on a representative HID lamp.
Journal Article

Development of Advanced EuroSID-2 and EuroSID-2re Radioss Dummies

2010-04-12
2010-01-0215
EuroSID-2 and EuroSID-2re are among the most frequently used side impact dummies in vehicle crash safety. Radioss is one of most widely applied finite element codes for crash safety analysis. To meet the needs of crash safety analysis and to exploit the potential of the Radioss code, a new generation of EuroSID-2 (ES2) and EuroSID-2re (ES2_RE) Radioss dummies was developed at First Technology Safety System (FTSS) in collaboration with Altair. This paper describes in detail the development of the ES2/ES2_RE dummies. Firstly whole dummy meshes were created based on CAD data and intensive efforts were made to obtain penetration/intersection-free models. Secondly FTSS finite element certificate tests at component level were conducted to obtain satisfactory component performances. These tests include the head drop test, the neck pendulum test, the lumbar pendulum test and the thorax drop test [ 1 , 2 ].
Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Journal Article

Occupant Responses in Child Restraint Systems Subjected to Full-Car Side Impact Tests

2010-04-12
2010-01-1043
Accident data show that the injury risks to children seated in child restraint systems (CRSs) are higher in side collisions than any other type of collision. To investigate child injury in the CRS in a side impact, it is necessary to understand the occupant responses in car-to-car crash tests. In this research, a series of full car side impact tests based on the ECE R95 test procedure was conducted. In the vehicle's struck-side rear seat location, a Q3s three-year-old child dummy was seated in a forward facing (FF) CRS, and a CRABI six-month-old (6MO) infant dummy was seated in a rear facing (RF) CRS and also was placed in car-bed restraint. In the non-struck side rear seat location, the RF CRSs also were installed. In addition to testing the CRSs installed by a seatbelt, an ISOFIX FF CRS and an ISOFIX RF CRS were tested. For the evaluations, occupant kinematic behavior and injury measures were compared.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
X