Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Brake Rotor Thickness Variation and Lateral Run-Out Measurements

2015-10-02
WIP
J3111
The scope of this recommended practice is to establish definitions and recommended methods for the measurement of lateral run-out and disc thickness variation in the laboratory and vehicle for passenger cars and light duty trucks up to 4546 kg gross vehicle weight. This recommended practice will breakdown the instrumentation (sensors and sizes), test setup, and data processing.
Standard

Component Level EPB Actuation NVH

2018-01-10
WIP
J3165
The component level EPB actuation NVH task force should review existing specifications and measurement methods used in the industry to find any commonalities and propose a recommended method for measuring and evaluating component level EPB actuation NVH to be used as a common standard throughout the industry. The task force should acknowledge the following objectives: 1. Task force should review existing industry specifications and further define the scope for creating the new standalone component level EPB actuation NVH standard a. The common standard should be universally recognized and accepted by the automotive industry b. Provide confidence that acceptable vehicle related NVH results will be achieved if vehicle level testing is completed c. Provide clear verifiable acceptance criteria 2. Task force must lay out steps and timing to complete the development of the new common standard. 3.
Standard

Dynamometer Low-Frequency Brake Noise Test Procedure

2017-07-18
WIP
J3002
This procedure will outline the necessary test equipment (fixturing, dynamometer, data acquisition system, etc.) and test sequence required to test for low-frequency brake noise on a brake noise dynamometer. It is intended to complement SAEJ2521, which focuses on high-frequency brake squeal.
Standard

Measurement of Tire/Pavement Noise Using Sound Intensity

2009-11-04
WIP
J2920
This standard specifies an engineering method for measuring acoustic power per unit area at points near the tire/pavement interface. The measurement quantifies the acoustic radiated sound intensity from the tire/pavement interface. This standard may be used to measure the sound intensity of varying tires and/or surfaces, over various operating conditions of the tire, or changes in surface characteristics.
Collection

Powertrain NVH, 2017

2017-03-28
The papers in this collection reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
Video

Spotlight on Design Insight: Sensors: Noise Avoidance and Cable Manufacturing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength. In the episode “Sensors: Noise Avoidance and Cable Manufacturing” (8:53), an engineer at Meggitt Sensing Systems demonstrates the intricate process of developing cable for sensors used in these situations.
Training / Education

Vehicle Sound Package Materials Web Seminar RePlay

Anytime
This four-session course provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The web seminar provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors Due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
In addition to the typical broadband noise character of wind noise, tonal noise phenomena can be much more disruptive, regardless of the overall interior noise quality of the vehicle. Whistling sounds usually occur by flow over sharp edges and resonant gaps, but can also be caused by the feedback of sound waves with laminar boundary layers or separation bubbles and the resulting frequency-selective growth of boundary layer instabilities. Such aeroacoustic feedback can e.g. occur at the side mirror of a vehicle and one compellingly needs the coupling of acoustic and flow field. A compressible large eddy simulation (LES) is in principle suitable but one has to take care of any numerical artifacts which can disturb the entire acoustic field. This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Technical Paper

Innovative Acoustic Material Concept Integration Into Vehicle Design Process

2020-09-30
2020-01-1527
Integration of acoustic material concepts into vehicle design process is an important part of full vehicle design. The ability to assess the acoustic performance of a particular sound package component early in the design process allows designers to test various designs concepts before selecting a final products. This paper describes an innovative acoustic material concept which is easily integrated in a design process through the use of a database of Biot parameters. Biot parameters are widely used in the automotive industry to describe the physical interactions between the acoustics waves travelling through foams, fibers or metamaterials and the solid and fluid phase of these poro-elastic materials. This new acoustic material concept provides a combination of absorption, transmission loss and added damping on the panel it is attached to.
Technical Paper

Using Statistical Energy Analysis to Optimize Sound Package for Realistic Load Cases

2020-09-30
2020-01-1525
The statistical energy analysis (SEA) is widely used to support the development of the sound package of cars. This paper will present a model prepared to investigate the sound package of the new Audi A3 and its correlation against measurements. Special care was given during the creation of the model on the representation of the structure to able the analysis of structure borne energy flow on top of the classical airborne analysis usually done with SEA. The sound package is also detailed in the model to allow further optimization and analysis of its performance. Two real life load cases will be presented to validate the model with measurements. First, the dominating powertrain and second, a case with dominating rolling noise. An analysis of the contribution of the different source components and a way to diagnose the weak paths of the vehicle will be presented. The focus of this investigation is the application of optimally adjusted treatment.
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elsastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

Sound Field Synthesis by Synthetic Array (SFS-SA) for Diffuse Field or TBL Structural Excitation

2020-09-30
2020-01-1522
Diffuse field or TBL excitation of vehicles are of huge interest in automotive industry, for such excitation reveberent rooms of wind tunnels are necessary, this means high cost experiments. The idea of sound field synthesis to create the acoustic effect corresponding to diffuse field or TBL excitation is of major interest to reduce drastically the cost of experiments. Originally techniques based on Loud speakers antenna [], [], were used. However, a major difficulty appeared due to driving simultaneously a huge number of Loud speakers. To avoid this difficulty a new technique based on Synthetic antenna was proposed in reference [] , instead of an array of loud speakers , just one loud speaker is used for scanning the surface where the acoustic field excite the structure. A post processing based on plane wave decomposition, is then applied to collected data in order to get the response of the structure or the sound transmission through the structure.
Technical Paper

Simulating and Optimizing the Dynamic Chassis Forces of the Audi e-tron

2020-09-30
2020-01-1521
With battery electric vehicles (BEV), due to the absence of the combustion process, the rolling noise comes even more into play. The BEV technology also leads to different concepts of how to mount the electric engine in the car. Commonly, also applied with the Audi e-tron, the rear engine is mounted on a subframe, which again is connected to the body structure. This concept leads to a better insulation in the high frequency range, yet it bears some problems in designing the mounts for ride comfort (up to 20Hz) or body boom (up to 70Hz). Commonly engine mounts are laid-out based on driving comfort (up to 20Hz). The current paper presents a new method to find an optimal mount design (concerning the stiffness) in order to reduce the dynamic chassis forces which are transferred to the body up to 100Hz. This directly comes along with a reduction of the sound pressure level for the ‘body boom’ phenomena.
Technical Paper

Tire NVH Optimization for Future Mobility

2020-09-30
2020-01-1520
Vehicle NVH (Noise, Vibration and Harshness) is one of the most critical customer touchpoints which may lead to buying decisions. The importance of Noise inside the cabin is increasing day by day because of the new era of E-mobility and autonomous driving. Noise source could be the engine, powertrain, tyre, suspension components, brake system, etc. depending on driving conditions. Among these, tire noise is being identified as biggest contributor at constant mid-speed driving where engine and powertrain operate at minimum noise and wind noise is also at a moderate level. This driving condition becomes very significant for electric vehicles where engine noise is replaced by motor noise which is a tonal noise at very high frequency. This makes the improvement of tire noise levels quintessential for good cabin acoustic feel. This demands a proactive approach to develop low noise tire platforms for future mobility by leveraging research tools and best practices in the industry.
Technical Paper

Simulation Process for the Acoustical Excitation of DC-Link Film Capacitors in Highly Integrated Electrical Drivetrains

2020-09-30
2020-01-1500
The advancing electrification of the powertrain is leading towards new challenges in the field of acoustics. Film capacitors used in power electronics are a potential source of high-frequency interfering noise since they are exposed to voltage harmonics. These voltage harmonics are caused by semiconductor switching operations that are necessary to convert the DC voltage of the battery into three-phase alternating current for the electrical machine. In order to predict the acoustic characteristics of the DC-link capacitor at an early stage of development, a multiphysical chain of effects has to be addressed to consider electrical and mechanical influences. In this paper, a new method to evaluate the excitation amplitude of film capacitor windings is presented. The corresponding amplitudes are calculated via an analytical force based on electromechanical couplings of the dielectric within film capacitors.
Technical Paper

Advanced CAE Methods for NVH Development of High Speed Electric Axle

2020-09-30
2020-01-1501
The rate in the electrification of vehicles has risen in recent years. With intensified development more and more attention is paid to the noise and vibration in such vehicles especially from the EDU (Electric Drive Unit). In this paper the main NVH simulation process of a high-speed E-axle up to 30,000 rpm for premium class vehicle application is presented. The high speed, high-power density and lightweight design introduces new challenges. Benchmarking of different EDUs and vehicles leads to targets which can be used at the early stage of development as subsystem targets. This paper shows the CAE methodology which can be used to verify the design and guarantee the target achievement. Using CAE both source and structure can be optimized to improve the NVH behavior.
X