Refine Your Search

Topic

Author

Affiliation

Search Results

Collection

Vehicle Dynamics, Stability and Control, 2017

2017-03-28
This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
Standard

Brake Rotor Thickness Variation and Lateral Run-Out Measurements

2015-10-02
WIP
J3111
The scope of this recommended practice is to establish definitions and recommended methods for the measurement of lateral run-out and disc thickness variation in the laboratory and vehicle for passenger cars and light duty trucks up to 4546 kg gross vehicle weight. This recommended practice will breakdown the instrumentation (sensors and sizes), test setup, and data processing.
Standard

Validation of Compressibility Test Systems for Friction Materials

2016-02-17
WIP
J3079/1
This SAE Recommended Practice applies to the validation process required for test systems used to measure deflection or compressibility of friction materials and friction material assemblies for passenger cars, light trucks, and commercial vehicles equipped with hydraulic or air brake systems, and using disc or drum brakes.
Standard

Concepts, Terms and Definitions Related to Surrogate Measures of Safety

2018-01-12
WIP
J3166
The document will define and describe in condensed form the fundamental theoretical concepts of surrogate measures of safety and define indicators (with variations). To the extent possible, the definitions should be kept neutral with respect to the technology or data collection method used as these change rapidly.
Standard

Component Level EPB Actuation NVH

2018-01-10
WIP
J3165
The component level EPB actuation NVH task force should review existing specifications and measurement methods used in the industry to find any commonalities and propose a recommended method for measuring and evaluating component level EPB actuation NVH to be used as a common standard throughout the industry. The task force should acknowledge the following objectives: 1. Task force should review existing industry specifications and further define the scope for creating the new standalone component level EPB actuation NVH standard a. The common standard should be universally recognized and accepted by the automotive industry b. Provide confidence that acceptable vehicle related NVH results will be achieved if vehicle level testing is completed c. Provide clear verifiable acceptance criteria 2. Task force must lay out steps and timing to complete the development of the new common standard. 3.
Standard

Electric Park Brake Sizing

2017-10-16
WIP
J3158
The scope of this new recommended practice should include, but not necessarily be limited to: 1. Define vehicle operating conditions used to drive MOC-EPB actuator design and selection 2. Define brake corner operating conditions (e.g. temperature and state of burnish) used to drive MOC-EPB actuator design and selection 3. Define actuator operating conditions (e.g. temperature, voltage, current limit, and state of wear) used to drive MOC-EPB actuator design and selection 4. Define methodology for addressing part to part variation in performance
Standard

Dynamometer Low-Frequency Brake Noise Test Procedure

2017-07-18
WIP
J3002
This procedure will outline the necessary test equipment (fixturing, dynamometer, data acquisition system, etc.) and test sequence required to test for low-frequency brake noise on a brake noise dynamometer. It is intended to complement SAEJ2521, which focuses on high-frequency brake squeal.
Collection

Vehicle Dynamics, Stability and Control, 2018

2018-04-03
This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
Collection

Steering and Suspension Technology Symposium, 2017

2017-03-28
The papers in this collection are to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers address new approaches as well as advances in application of steering, suspension related technologies.
Video

Development of an Electrically-driven Intelligent Brake Unit

2012-02-16
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results Presenter Yukio Ohtani, Hitachi Automotive Systems
Video

Technical Keynote: State-of-Art of Moire Method and Applications to Shape, Displacement and Strain Measurement

2011-11-17
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Video

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

2012-05-22
The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.
Video

Safety Element out of Context - A Practical Approach

2012-05-22
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Video

Copper-Rotor Induction- Motors: One Alternative to Rare Earths in Traction Motors

2012-05-16
The copper-rotor induction-motor made its debut in automotive electric traction in 1990 in GM's Impact EV. Since then, this motor architecture has covered millions of miles on other vehicle platforms which will soon include Toyota's RAV4-EV. With the industry's attention focused on cost-effective alternatives to permanent-magnet traction motors, the induction motor has returned to the spotlight. This talk will overview where the copper-rotor induction-motor is today, how the technology has evolved since the days of the GM Impact, the state-of-play in its mass-manufacturing processes and today's major supply-chain players. Presenter Malcolm Burwell, International Copper Association Inc.
Video

Global Market Developments

2012-05-16
The traction motor is key to the �synergy of the electric powertrain�, the overall functionality of the battery, e-motor, power control electronics, and charging system. Therefore some automakers have decided to design, develop, and produce their traction motors in house while some others are working with suppliers for their electric power train motors. Off-the-shelf motors, no matter how extensively they are adapted for a specific application, can compromise the efficiencies of the propulsion system. Presenter Marc Winterhoff, Roland Berger Strategy Consultants
Video

Technical Keynote - Introduction to EcoCAR The NeXt Challenge Year Three: Vehicle Refinement and Testing

2012-06-06
This presentation will introduce the overall goals of the EcoCAR competition in brief, and will go into the third and final year of the competition in detail. The final year of competition saw teams refining and testing their student-built advanced technology vehicles including hybrids, plug-in hybrids, hydrogen fuel cell PHEVs and one battery electric. Important events, such as the Spring Workshop chassis dynamometer testing event at the U.S. Environmental Protection agency, as well as significant competition results, such as vehicle performance, consumer acceptability and efficiency will be presented. Presenter Patrick Walsh
X