Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Thermoplastic Coolant Tubes

2018-09-11
WIP
J3181
Standard covers material performance requirements for extruded thermoplastic tubes used in engine coolant/water applications.
Standard

Nonmetallic EGR Tubing with One or More Layers

2018-09-11
WIP
J3183
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use in exhaust gas recirculation systems Requirements in this document apply to monowall tubing (one layer construction) and multilayer tubing. The tube construction can have a straight wall configuration, a wall that is convoluted or corrugated, or a combination of each.
Standard

Diesel Exhaust Fluid (DEF) tubing with one or more layers

2018-09-11
WIP
J3184
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid carrying DEF lines for diesel engine selective catalyst reduction (SCR) after-treatment systems. Requirements in this document also apply to monowall tubing (one layer construction) and multi-layer constructions. Unless otherwise agreed to by suppliers and users this document applies to tubing for any portion of the DEF system that might operate continuously at temperatures above –40 °C and below 120 °C or for high temperature systems up to 160 °C. Maximum working pressure of 1140 kPa absolute. The tubing can be used at the peak intermittent exterior temperature up to 140 °C or 180 °C. Tubing systems supplied to this application are usually required to thaw from the frozen condition using various heating methods in operation complying with EPA requirements.
Standard

Nonmetallic Air Suspension System Tubing with One or More Layers

2018-09-11
WIP
J3185
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as pneumatic tubing in automotive air suspension lines. Requirements in this document also apply to monowall tubing (one layer construction) or multi-layer (MLT) constructions. Unless otherwise agreed to by suppliers and users this document applies to tubing for any portion of the fuel system that might operate continuously at temperatures above –40°C and below 90°C and up to a maximum working gage pressure of 1500 kPa. The tubing can be used at the peak intermittent temperature up to 115 °C with peak dynamic pressures of up to 2000 kPa. This document can apply to systems that operate at higher pressures and/or are exposed to higher temperatures with appropriate changes to the acceptance criteria within this document.
Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Biodiesel Permeability in Polyethylene

2012-05-22
This paper reports solubility, diffusivity and permeability data for soy and rapeseed methyl esters in polyethylene together with comparisons with methyl oleate and linoleate. These data were used to discuss the reliability of predictive models for diffusion and solubility of additive type molecules into semi-crystalline thermoplastic polymers. Presenter Emmanuel Richaud
Video

Development of Scratch Resistant Clear Coat for Automotive

2012-05-23
Scratch resistance is one of the most important customer requirements for automotive painting. Scratches occur as a result of a load being imposed on a paint film, which then destroys or deforms it. In order to improve the scratch resistance properties of clear coat, a specially developed molecular that act to accelerate closslinking reaction was added to the clear coat main resin. This developed molecular facilitates closslinking between multiple molecules and creates an unprecedentedly fine molecular structure. The result is a soft, highly elastic, and durable clear coat with improved resistance to light and acid as well as enhanced deformation recovery properties. It requires no special maintenance, prevents luster degradation caused by surface scratches and helps to prolong new-car color and gloss. Developmental Clear Coat is introduced into the flagship of the Lexus range - the LS as Self-restoring Coat in 2009. Presenter Junya Ogawa, Developmental Center
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
DSM will present various application solutions in High Performance Plastics enabling to significant weight or friction reduction and thus to reduced fuel consumption and/or emission levels, and on top of that to lower system costs. Typical Eco+ Solutions Examples to be presented are: - Friction Reduction: Nylon 46 in chain tensioners yielding up to 1 % fuel reduction - Weight Reduction (metal-to-plastic conversion): Nylon 46 with long term temperature resistance upto 230 C in turbo components, Nylon 6 in oil pans/sumps, PET in plastic precision parts, Nylon 46 in gears, many other examples - Electrification: Nylon 46 in start/stop and e-motor components, TPC in HV cables - System Cost optimization: High Flow PA6 in various components, TPC in Brake Tubes - Improved LCA: biobased materials as PA410 and TPC-Eco Typical Application Solutions concern: air induction systems, engine and transmission components, electrical systems, structural&safety parts.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Video

Low Cost Carbon Fiber Materials and Processing Technologies

2012-05-29
The need for light-weighting of automotive structures has spurred on a tremendous amount of interest in and development of low cost carbon fiber composite materials and manufacturing. This presentation provides a description of the commercial carbon fiber concept compared to traditional aerospace and specialty carbon fiber products. A specific update is presented on the development and commercialization of new low cost carbon fiber based on lignin / PAN precursor technology. The second focus of the presentation is on carbon fiber composite manufacturing processes, including carbon SMC, RTM, prepregs, and thermoplastic processes. Advantages and disadvantages of these processes are discussed, especially related to low cost manufacturing. Presenter George Husman, Zoltek Companies Inc.
Video

Lightweight Door Panel Made with Bio-Based Composite Material

2012-05-23
This paper presents a new concept for a 100% plastic prototype automotive door panel. This concept has the potential of providing a weight reduction of up to 40% compared to conventional steel door panels, but with equivalent performance (static strength). This innovative technology can be used for a variety of exterior automotive parts. The concept includes a composite sandwich panel combination of GFRP (glass fiber reinforced polymer), and LACTIF®, which is expanded beads foam made from PLA (polylactic acid) and developed by JSP Corporation. This GFRP+LACTIF® composite design offers the following characteristics: Excellent environmental resistance Strong adhesion Equivalent static strength (vs. conventional door panels) Design flexibility This concept also offers an alternative to conventional steel door panel systems by using unsaturated polyester material of plant origin as part of the GFRP composite.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends. Presenter Victor Nasreddine
Video

Development of High Strength Polymer Based Bearing for Automotive Parts under Boundary Lubrication

2012-05-23
Composite bearings of PTFE as the base material have been widely used for automotive parts. However, in recent years, due to downsizing, faster sliding speeds, and tendency to increase the bearing load with high performance, particularly for boundary lubrication conditions, the PTFE-based composite bearing is often worn, making it difficult to apply to some applications. A high strength polymer was selected as an alternative to PTFE base material, and the mechanical properties and performance in a start-stop test, reciprocating sliding test and seizure test were evaluated. Focusing on the characteristics of high strength, by applying a PEEK resin, in each evaluation, it was confirmed that superior performance was achieved compared with a conventional PTFE based composite bearing. Presenter Yohei Takada, Daido Metal Co., Ltd.
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
With the increased demand for high volume, cost-effective, fiber-reinforced thermoplastic parts, the lack of high throughput systems has become more pronounced. Thermoforming as a method to generate complex shapes from a flat preform is dependable and fast. In order to use readily available, standard unidirectional impregnated thermoplastic tape in this process, a flat perform must be created prior to the thermoforming step. Formerly, creating the preform by hand layup was a time consuming and therefore costly, step. Fiberforge�?s patented RELAY� technology overcomes the challenges of handling thermoplastic prepreg tape and provides a solution through the automated creation of a flat preform, referred to as a Tailored Blank?. Producing a part for thermoforming with accurate ply orientation and scrap minimization is now as simple as loading a material spool followed by a pressing a start button. Presenter Christina McClard, Fiberforge
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
Training / Education

Performance and Use of Polymer Plan Bearings in Transmission Design Web Seminar RePlay

Anytime
As part of a broad transmission design philosophy, the understanding and application of tribological systems is critical. The number of interacting surfaces within a modern automotive transmission continues to increase, while the demands on the system continue to press the limits of traditional technologies. The understanding of each surface interaction within the greater system becomes increasingly important as each component is asked to do more to benefit the overall system. This short course will present the tribological performance of polymeric plain bearings as related to transmission applications.
Training / Education

Introduction to Materials Bundle

Anytime
The following six on-demand courses are included in the Introduction to Materials bundle. Each course is approximately one-hour in duration. See Topics/Outline for additional details. Introduction to Physical Properties This course provides an an overview of manufacturing materials and their physical properties, including thermal, electrical, and magnetic properties and introduces volumetric characteristics, such as mass, weight, and density.
Technical Paper

Coarse Mesh RIFF Method to Identify the Homogenized Flexural and Shear Complex Moduli of Composite Beams

2020-09-30
2020-01-1579
Facing the increasing use of composite materials regarding their stiffness to mass ratio, industries need to design complex structures. Hence specific methods must developed to predict the vibratory behavior of such materials but also to check their performances in-situ, analyse the presence of flaws or quantify degradation of properties throughout time. This paper describes a method to estimate the flexural and shear complex moduli of composite beams, based on a simple measurement of the transverse displacement on a coarse mesh using a hammer and an accelerometer. The herein depicted approach consists in an adaptation of the corrected finite difference scheme (Leclere et al. 2012) applied to an inverse vibratory method developed by the authors in previous works (Wassereau et al. 2017). The Timoshenko’s equation of motion and the corrected finite difference scheme are the two major key points of the method.
Technical Paper

The Gum Stability of Gasolines

1932-01-01
320008
AN investigation of the accelerated oxidation method for predicting the gum stability of gasolines was made to determine the effects of oxygen pressure and of temperature on the observed induction periods. The data obtained on the effect of pressure indicated that there was a definite relation between the induction period at any pressure and the induction period at an air pressure of 1 atmosphere. The data obtained on the effect of temperature showed that the induction periods of different gasolines changed to a different extent with temperature, so that gasolines with the same induction period at any one temperature might have very different periods of stability at storage temperatures. Since temperature has a marked effect on the observed induction period and since the gasoline is at a lower temperature than that of the bath for a considerable period of time at the beginning of the experiment, a correction factor was applied to obtain true induction periods at the bath temperature.
X