Refine Your Search

Topic

Author

Affiliation

Search Results

Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Video

Spotlight on Design Insight: Simulation Tools for Engine Design

2016-04-03
In “Simulation Tools for Engine Design” engineers from Ricardo Software discuss the use of simulation software in new powertrain development. Another engineer, this time from General Motors, talks about how simulation tools helped them solve the challenge of fuel flow reversion while designing the new turbocharged Cadillac V6 engine. This episode highlights: The challenge of simulating complex and combined systems in one vehicle An example of how a library of components in a software package can be chosen to form a specific system and analyzed How computational fluid dynamics simulation tools were used to help redesign a new planum Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.
Video

Formula SAE Sponsorship Video

2013-08-29
Formula SAE challenges students to conceive, design, fabricate, and compete with small formula-style racing car. 120 university teams from around the globe spend 8-12 months designing, building and preparing their vehicles for the competition. Learn why sponsors support Formula SAE and become a sponsor today!
Collection

Vehicle Aerodynamics, 2014

2014-04-01
This technical paper collection covers vehicle aerodynamic development, drag reduction and fuel economy, handling and stability, cooling flows, surface soiling and water management, vehicle internal environment, tyre aerodynamics and modelling, aeroacoustics, structural response to aerodynamic loading, simulating the on-road environment, onset flow turbulence, unsteady aerodynamics, fundamental flow structures, new test methods and facilities, new applications of computational fluid dynamics simulation, competition vehicle aerodynamics.
Collection

Thermal Systems Modeling and Simulation, 2018

2018-04-03
The papers in this collleciton focus on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
Collection

Fuel Injection and Sprays, 2018

2018-04-03
This collection is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects.
Collection

Vehicle Aerodynamics, 2017

2017-03-28
Vehicle aerodynamic development, drag reduction and fuel economy, handling and stability, cooling flows, surface soiling and water management, vehicle internal environment, tyre aerodynamics and modelling, aeroacoustics, structural response to aerodynamic loading, simulating the on-road environment, onset flow turbulence, unsteady aerodynamics, fundamental flow structures, new test methods and facilities, new applications of computational fluid dynamics simulation, competition vehicle aerodynamics.
Collection

Thermal Systems Modeling and Simulation, 2017

2017-03-28
The papers in this collleciton focus on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods
Collection

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2017

2017-03-28
Papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs are included in the collection.
Collection

CAD/CAM/CAE Technology, 2017

2017-03-28
This collection papers advances the knowledge in product design, manufacturing processes, and engineering analysis using the state-of-the-art computer technology. The scope includes such areas as CFD, manufacturing and assembly simulation, crash-worthiness, computational mechanics, mold flow, ride simulation, ergonomic design, NVH, reverse engineering, etc. Developments in numerical methods applicable to automotive engineering problems are also included.
Collection

Fuel Injection and Sprays, 2017

2017-03-28
This collection is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects.
Collection

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2018

2018-04-03
Papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs are included in the collection.
Journal Article

Computational-Based Aerodynamic Design for a Formula SAE Vehicle

2018-03-01
Abstract The computational analysis and design of an aerodynamics system for a Formula SAE vehicle is presented. The work utilizes a stochastic-approximation optimization (SAO) process coupled with a computational fluid dynamics (CFD) solver. The methodology is presented in a general manner, and is applicable to other complex parametrizable systems. A mix of discrete and continuous variables is established to define the airfoil profile, location, sizing and angle of all wing elements. Objectives are established to maximize downforce, minimize drag and maintain a target vehicle aerodynamic balance. A combination of successive 2D and 3D CFD evaluations have achieved vehicle aerodynamic performance targets at a minimal computational cost.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Impact of Rear Spoiler on Vehicle Braking Longitudinal Dynamics

2021-04-30
Abstract During vehicle braking, friction forces generated on the vehicle tires and the vehicle resisting aerodynamic forces play a critical role that impact the vehicle’s longitudinal braking dynamics such as stopping distance and time. These forces are mainly the tires’ braking and rolling resisting forces, vehicle lift, and drag forces. The vehicle aerodynamic forces cannot be neglected due to their impact on the vehicle’s longitudinal dynamics, especially at high vehicle speeds. This article investigates the impact of the vehicle’s rear spoiler on both vehicle aerodynamic forces and longitudinal dynamic, such as stopping distance and time. A computational fluid dynamics (CFD) model using ANSYS-Fluent® is employed to precisely estimate the vehicle’s aerodynamic forces in the case of a vehicle without and with a rear spoiler.
Journal Article

Aerodynamic Characterization of a Full-Scale Compact Car Exposed to Transient Crosswind

2021-04-07
Abstract The transient surface pressure over a full-scale, operational compact automotive vehicle—a Volkswagen Golf 7—exposed to transient crosswinds with relative yaw angles of β = 22-45° has been characterized. Experiments were performed at the BMW side-wind facility in Aschheim, Germany. Measurements of the incoming flow in front of the car were taken with eleven five-hole dynamic pressure probes, and separately, time-resolved surface pressure measurements at 188 locations were performed. Unsteady characteristics (not able to be identified in quasi-steady modelling) have been identified: the flow in separated regions on the vehicle’s leeward side takes longer to develop than at the windward side, and spatially, the vehicle experiences local crosswind as it gradually enters the crosswind.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

2019-10-14
Abstract The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method.
Journal Article

CFD and Wind Tunnel Analysis of the Drag on a Human-Powered Vehicle Designed for a Speed Record Attempt

2019-06-07
Abstract A computational fluid dynamics (CFD) and wind tunnel investigation of a human powered vehicle (HPV), designed by the Velo Racing Team at Ostfalia University, is undertaken to analyse the Eco-body’s drag efficiency. Aimed at competing in a high profile HPV speed record competition, the vehicle’s aerodynamic efficiency is shown to compare well with successful recent eco-body designs. Despite several limitations, newly obtained wind tunnel data shows that the corresponding CFD simulations offer an effective tool for analysing and refining the HPV design. It is shown that, in particular, the design of the rear wheel fairings, as well as the ride height of the vehicle, may be optimised further. In addition, refinements to the CFD and wind tunnel methodologies are recommended to help correlation.
X