Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Mainstream and Main Street Hybrids

2012-03-29
Several technological advancements have enabled hybrid technology to become a viable option in the commercial truck market. Although hybrid trucks are becoming more mainstream, they are not the right alternative fuel solution for every application. When matched with the right duty cycle, hybrid technology can provide a significant cost savings. Due to these advancements and anticipated benefits, hybrid commercial trucks are forecasted to become a significant part of the commercial truck market. Presenter Glenn Ellis, Hino Motors Sales USA Inc.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Blue Bird Propane Powered Vision School Bus

2012-04-10
Propane autogas, the world?s third most-used engine fuel, powers vehicles, transit buses, and now school buses. Blue Bird has recently launched the Next Generation Vision type C school bus, powered by a ROUSH CleanTech liquid propane autogas fuel system and a Ford 6.8L V10 engine. The bus reduces operating costs by up to 40%, greenhouse gas emissions by up to 24%, and maintains the factory horsepower, torque, and towing capacity ratings. Learn about how school districts are saving over $.30 / mile using this clean, domestically-produced fuel. Presenter Brian Carney, Roush CleanTech.
Video

Spotlight on Design Insight: Using Turbocharging in New Engine Design

2016-04-03
In “Using Turbocharging in New Engine Design” (9:23), engineers from Schaeffler Group USA and McLaren Performance Tech explain what turbocharging is, and what it can do to improve both the power output of an engine and its fuel efficiency. Another engineer from the General Motors Powertrain group talks about how turbocharging was used in the new engine design for the Cadillac CT6. This episode highlights: The lessons learned from when turbocharging was first used to help heavy-duty trucks go uphill The experience acquired from car racing using turbo-charged engines The advantages of using turbo charging to decrease the size of engines without losing power output Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.
Video

Propane Autogas: The Clear Choice

2012-04-10
The presentation by Tucker Perkins, President of CleanFUEL USA, provides important information to those wanting to learn about alternative fuels, specifically propane autogas. CleanFUEL USA provides liquid propane injection engine system for the 6L engine in the GM G4500 cutaway chassis used in many Type A busses. They are also developing an 8L engine in partnership with Freightliner/ThomasBuilt Bus for the Type C bus. This presentation discussed many of the advantages of propane autogas use, such as better economics, lower emissions, and inexpensive infrastructure for the fueling network. Presenter Tucker Perkins, CleanFUEL USA
Video

Powertrain Innovation Requires Infrastructure Innovation!

2012-04-10
Who are the people who know the most about the buses in your fleet? They are most likely the operators and the servicing technicians. They are also the key people whose knowledge, level of training and attitude can determine the success or failure of new powertrain technologies. Training and recruitment of both need to be held to a higher standard than we have seen in the past. I will argue that even the culture of those involved in fleet operations needs to be changed. The bar for technical competence and product knowledge needs to be raised for operators and technicians. In return managers should find ways to include them as stakeholders, investing them with both additional responsibility and accountability. This will require greater access to training and recognition of achievement. Where are the busses stored and serviced? Most likely in an all-purpose state/county/municipal service facility servicing a variety of equipment.
Video

Natural Gas for School Buses: A Case for Using the Only Domestically Produced Alternative Fuel

2012-04-10
A review of the processes that lead to the conclusion that CNG was the best solution for the fleet, including the efforts to gain public support for alternative fuels for school buses. MISD is now home for 42 CNG powered school buses (of 200). The presentation will include training and design tips for safety and smooth operations along with maintenance considerations for using CNG. Alternative fuels, the dilemma of which comes first - refueling station or operational buses ? has an impact on grant approval and funding, bearing discussion of the option of a public/private model. Unlike other alternative fuels, CNG has a national security impact Presenter Charles Stone, Mansfield Indep School Dist
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Collection

Natural Gas Engines and Vehicles, 2013

2013-04-09
The 9 papers in this technical collection cover fuel injection, combustion, controls, performance and emissions of SI engines fueled with methane based fuels such as natural gas, producer gas, coke oven gas or hydrogen-natural gas blends.
Collection

Natural Gas Engines and Vehicles, 2011

2011-04-12
The 5 papers in this technical paper collection cover natural gas engines and vehicles. Topics include: sliding mode control of air path in diesel-dual-fuel engine; optimization of natural gas automotive engine cooling jacket using CFD analysis; waste coke oven gas used as a potential fuel for engines; and more.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Standard

Ride Index Structure and Development Methodology

2019-04-24
HISTORICAL
J2834_201904
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Standard

Ride Index Structure and Development Methodology

2013-10-22
HISTORICAL
J2834_201310
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Standard

Ride Index Structure and Development Methodology

2019-10-09
CURRENT
J2834_201910
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Off-road Emission Performance of SUV with Diesel and Natural Gas Powertrain

2009-09-13
2009-24-0144
This study is based on a project which addresses the reduction of CO2 and pollutant emissions of off-road vehicles. For this purpose the use of CNG drive trains in high alpine areas is an interesting alternative to the standard diesel technology. The same SUV with CNG and diesel powertrain has been measured and methodically compared with regard to fuel consumption and exhaust emission performance. These real-world measurements have shown the potential when applying a CNG concept for this utilization. Subsequently, the real-world on-board measurements were compared with the results of a simulation program for SUV off-road performance.
X