Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Technical Paper

Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications

2011-04-12
2011-01-1329
Since early 2010, most new medium- and heavy-duty diesel vehicles in the US rely on urea-based Selective Catalytic Reduction (SCR) technology for meeting the most stringent regulations on nitrogen oxides (NOx) emissions in the world today. Catalyst technologies of choice include Copper (Cu)- and Iron (Fe)-based SCR. In this work, the performances of Fe-SCR and Cu-SCR were investigated in the most commonly used DOC + CSF + SCR system configuration. Cu-SCR offered advantages over Fe-SCR in terms of low temperature conversion, NO₂:NOx ratio tolerance and NH₃ slip, while Fe-SCR demonstrated superior performance under optimized NO₂:NOx ratio and at higher temperatures. The Cu-SCR catalyst displayed less tolerance to sulfur (S) exposure. Reactor testing has shown that Cu-SCR catalysts deactivate at low temperature when poisoned by sulfur.
Journal Article

The Effect of Pt:Pd Ratio on Heavy-Duty Diesel Oxidation Catalyst Performance: An Experimental and Modeling Study

2015-04-14
2015-01-1052
A combined experimental and modeling study was carried out to investigate the effects of Pt:Pd ratio on the performance of diesel oxidation catalysts (DOC) for heavy-duty applications1 (PGM<50 g/ft3). In the first part of this work, transient light-off and steady-state experiments were performed over a series of hydrothermally aged DOCs with different Pt:Pd ratios and PGM loadings. It was found that n-decane and NO oxidation activities increased monotonically as the Pt:Pd ratio was increased while the oxidation of unsaturated hydrocarbons (HC) (C3H6 and C7H8) first increased with an increase in Pt:Pd ratio and then plateaued at higher Pt content. In contrast, the CO oxidation exhibited opposite trend, with the catalyst containing low Pt (high Pd) level being more active. The presence of HC lowered the outlet NO2/NOx ratio by reducing the NO2 generated via NO oxidation back to NO. The negative effect of HCs on NO2/NOx ratio increased in the order: C3H6
X