Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

2018-06-04
Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Virtual Vehicle Design based on Key Performance Indicators Assessing the Vehicle Portfolio

2014-09-30
2014-01-2415
This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality.
Journal Article

Shifter Fork Stiffness Correlation to Gear Shift Quality

2013-09-24
2013-01-2447
Shift quality of a manual transmission is a critical characteristic that requires utmost care while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shifter design, gear design, transmission oil selection etc. This paper presents a correlation between stiffness of the shift fork in manual transmission with the gear shift quality using a gear shift quality assessment setup. Stiffness of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the same. A direct correlation of gear shift fork stiffness with the shift force experienced by the driver is established. The shift system was modeled in the UG NX 6.0 software to collate the synchronization force, shift system gap etc with the constraint on the shift fork.
Journal Article

Influence of Gear Geometry on Gearbox Noise Reduction - An Experimental Investigation

2014-10-01
2014-01-9029
The present competitive market scenario and customer requirements demand for improved NVH quality and to meet statutory norms without increased cost. When gears are used for power transmission, gear noise is of particular concern. The noise may be created due to harmonics of the rotating and meshing internal components. This has a significant effect on the overall vehicle sound quality. Various factors contribute to gearbox noise. Some of them include shaft misalignments, gear geometry, lubrication, bearings and loose mountings. Hence it is essential to study which factors contribute to the gearbox noise and to develop countermeasures for the same. Although a number of factors may contribute to gear noise as mentioned, the scope of this paper is limited to the effect of gear geometry alone on the gearbox noise.
Technical Paper

Bump Steer and Brake Steer Optimization in Steering Linkages Through TAGUCHI Method DOE Analysis

2021-09-22
2021-26-0079
Due to recent infrastructural development and emerging competitive automotive markets, there is seen a huge shift in customer’s demand and vehicle drivability pattern in commercial vehicle industry. Now apart from ensuring better vehicle durability and best in class tyre life and fuel mileage, a vehicle manufacturer also has to focus on other key attributes like driver’s safety and ride comfort. Thus, for ensuring enhanced drivability, key parameters for ensuring better vehicle handling includes optimization of bump steer and brake steer. Both bump steer and brake steer are vehicle’s undesirable phenomenon where a driver is forced to constantly make steering wheel correction in order to safely maneuver the vehicle in the desired path.
Technical Paper

Experimental Rattle Source Characterisation Using Matrix Inversion on a Reception Plate

2020-09-30
2020-01-1541
Minimizing rattle noises is becoming increasingly important for hybrid and electrical vehicles as masking from the internal combustion engine is missing and in view of the functional requirements of the office-like interiors of next generation automated vehicles. Rattle shall therefore be considered in the design phase of component systems. One hurdle is the modelling of the excitation mechanisms and its experimental validation. In this work we focus on excitation by loose parts having functional clearances such as gear systems or ball sensors in safety belt retractors. These parts are excited by relatively large low frequency displacements such as road-induced movements of the car body or low order rigid body engine vibrations generating multiple impacts with broad band frequency content. Direct measurement of the impact forces is in many cases not possible.
Technical Paper

Modeling and Parameter Estimation of Automatic Transmission for Heavy-Duty Vehicle Using Dual Clutch Scheme

2020-09-15
2020-01-2242
This paper focuses on modeling of the heavy-duty vehicle drivetrain with automatic transmission by using dual clutch scheme. The planetary gear set in the automatic transmission is complicated structure and difficult to understand. The advantage of the dual clutch scheme is that it can be used to represent the complex planetary gear set intuitively, which is a great help to understand the gear shifting process. It is also suitable for being used in the controller due to its low order. Some conditions are required to convert the planetary gear set to the dual clutch model. The heavy-duty vehicle driveline can be converted to the dual clutch model due to its heavy engine and vehicle inertia. This paper also proposes system parameter estimation methods to represent the driveline model. The main parameters are lumped inertia, lumped gear efficiency, output shaft compliance and friction coefficient of clutches.
Technical Paper

Development of Commercial Vehicle E-Axle System Based on NVH Performance Optimization

2020-04-14
2020-01-1421
With the continuous development of various technologies in the field of electric vehicles, more and more mature products are put into the market. Among them, electric commercial vehicle has been supported by many preferential policies because of its wide use and high energy utilization and has developed rapidly in recent years. At present, the electric drive-train systems of commercial vehicles can be divided into motor direct drive, integrated el-axle and distributed e-wheel drive. The first type only uses motor to replace the engine, and the other parts have little change. This method has low transmission efficiency and loose structure, which is a temporary transition scheme. The drive types of integrated E-axle and distributed E-wheel have their own advantages and disadvantages, which way to become the mainstream of the future have not yet been decided.
Technical Paper

Necessity of Damper for Hydrostatic Transmission (HST) Tractors

2021-09-22
2021-26-0278
In a modern world, the tractor customer demands are increasing for more comfortable, new technology, fuel efficient and quieter vehicle. The customer’s expectation for NVH refinement often challenges the limitations for tractor designs. For smaller tractors Hydrostatic Transmission (HST) is need due to higher demand for fuel efficiency, lightweight powertrain, and the operation will become easy in the farm field. With the Hydrostatic Transmission (HST) tractor without damper, there is a technical challenge like withstanding of the sudden impacts from the implements which are connected to PTO during field operations. The NVH behavior in driveline is critical phenomena which can cause the discomfort to end users and structural failure of driveline parts. During gear engagement due to sudden variation in torque the driveline parts are tends to clash each other because of lashes which will create high level of angular acceleration and noise.
Technical Paper

A Detailed Study on Differential Bearing Adjuster Ring Thread Engagement and Joint Strength, under Combined Bending and Axial Loading

2021-09-22
2021-26-0370
Adjuster rings are used in commercial vehicle axle assembly to preload differential bearings and provide support in the axial direction. Adjuster along with the carrier and bearing cap combined to form a threaded joint. Adjuster with external threads engages with internal threads formed in carrier and bearing cap. Preload in differential assembly maintains the system rigidity and helps to maintain an optimized hypoid gear engagement. An adequate preload is important to achieve a desirable bearing life. Reduction in thread engagement at adjuster joint fully or partially will cause a reduction in preload and can lead to gear misalignment. This can cause severe durability concerns. In some cases, it is observed that under vehicle operating loads adjuster ring is backed off from its assembled condition by bending the split pin (split pin is, positive lock, used to maintain adjuster position) and adjuster threads were stripped off.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

CFD based Prediction of Spin Power Loss of Automotive Differential System

2015-09-29
2015-01-2783
In an automotive power train system, the differential gear system plays a vital role of enabling the vehicle to transfer the engine torque to the wheels. The differential system consists of complex system of gears which are meshed with each other. Effective lubrication of the differential system ensures that the metal to metal contact between the gears is avoided. In addition, the lubricants also acts as a thermal medium to effectively dissipate the heat produced due to frictional resistances. For dipped lubrication system, the use of lubrication oil leads to a loss of transmission power, and the loss increases with increasing rotational speeds. Prediction and an understanding of the transmission loss inside the differential system is important as it provides a means to increase the power transmission efficiency. In addition, it provides insights to optimize the lubrication methods, gear profile, and gear housings.
Journal Article

Electric Vehicle Energy Consumption Simulation by Modeling the Efficiency of Driveline Components

2016-04-11
2016-01-9016
The feasibility of improving the energy efficiency of Electric Vehicles (EV) by manipulating operation points by means of a variable transmission is investigated with an efficient mathematical model of power losses in all driveline components. Introduced model can be solved in real-time making it possible to embed it to a control scheme of EV. Empirical test results are employed to derive the efficiency of the power electronics and electric motor at operation points while the mechanical power losses are predicted by a comprehensive and generic formulation for efficiency analysis. The simulation model used comprises electrical component efficiency, drivetrain inertias, gearbox efficiency, regenerative braking, and gear ratio selection. Three different transmission types are studied in this work; a single reduction gear, a five-step gearbox and an Infinitely Variable Transmission.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

The Study of Steering on Ramp Based on Electric Tracked Vehicle

2020-02-24
2020-01-5015
The research on the characteristics of vehicle movement is the premise to guarantee the smooth operation of electric vehicles, and it’s also the basis for developing the vehicle ability in depth. Therefore, it’s essential to study on the vehicle movement characteristics. And steering on ramp is a typical working condition for tracked vehicle. Firstly, the kinematics and dynamics of tracked vehicle during the steering process on ramp are analyzed in detail aiming at the problem that it’s complex and difficult to describe the process of steering, and the dynamics model of tracked vehicle is established in the condition of the offset of instantaneous steering center and the sliding of the track and other factors. Second, the relationships between driving force, steering radius and slop are obtained by simulation, and the variation rules of these parameters are analyzed. Finally, the model of steering on ramp is verified using electric tracked vehicle.
Technical Paper

A Robust Cargo Box Structure Development Using DFSS Methodology

2020-04-14
2020-01-0601
A cargo box is a key structure in a pickup truck which is used to hold various items. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a Design for Six Sigma (DFSS) approach to improve the durability of cargo box panel in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, DFSS tools were proposed to find a robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. The optimum design selected was the one with the minimum stress level and the least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. DFSS identified load paths which helped teams finally come up with integrated shear plate to resolve the durability concern.
Journal Article

Gear Rattle Noise Prediction from Dynamic Simulation

2011-09-13
2011-01-2242
Gear rattle noise is a common issue in manual gear transmissions and is often difficult to resolve. This paper discusses a methodology involving development of a simulation model for noise prediction and subsequent design of experiments (DOE) analysis to select optimal design parameters to reduce rattle noise. A one-dimensional torsional vibration simulation model for a tractor driveline was developed and was correlated with experimental measurements. This correlated model was used to calculate the torque variation between the gear pairs based on engine excitations. The standard deviation of this mesh torque was used as a metric and was correlated to noise ratings assigned by experts during experimental evaluation. Using this metric as the response variable, a DOE was conducted to determine the contributing factors and their influence on the rattle noise. Optimal design parameters were selected to achieve target value on the rattle metric.
X