Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Combination Tail and Floodlamp for Industrial Equipment

2003-05-15
CURRENT
J94_200305
This SAE Standard provides performance and general design requirements and related test procedures for a combination tail and floodlamp for use on industrial wheeled equipment that may be operated on public roads.
Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Video

Data Driven Testing for HIL Systems

2011-12-05
The amount of software, computation and logic embedded into the vehicle systems is increasing. Testing of complex real time embedded systems using Hardware in Loop (HIL) simulations across different vehicle platforms has been a challenge. Data driven testing enables a qualitative approach to test these complex vehicle systems. It consists of a test framework wherein the test logic and data are independent of the HIL test environment. The data comprises variables used for both input values and output verification values. This data is maintained in a database or in the form of tables. Each row defines an independent test scenario. The entire test data is divided into three categories, High, Medium and Low. This feature gives the advantage of leveraging the same set of test data from Unit Level Testing phases to the Integration Test phase in the V-Cycle of software development. A data driven test approach helps the reuse of tests across vehicle platforms.
Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Video

Best Practices for In-Vehicle Network Development

2011-12-05
The number of electronically controlled systems in commercial vehicles is increasing rapidly. Much of this electrical content is controlled using ECUs (Electronic Control Units) which share information using some type of networking technology, such as a CAN bus running the SAE J1939 protocol. Presenter Jeffrey Craig, Vector CANtech Inc.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Journal Article

Intelligent Predictive Cruise Control Application Analysis for Commercial Vehicles based on a Commercial Vehicles Usage Study

2013-10-20
2013-01-9022
With the introduction of advanced digital road maps, which include information on the slope and curve radius of the highways, predictive control for standard and hybrid commercial vehicles, based on these maps, is about to be released by the vehicle manufacturers. For example, intelligent predictive cruise control has been announced for introduction in 2012 by Scania and Daimler. In addition, hybrid commercial city buses like MAN's Lion's City Hybrid have already been implemented. But the question remains about the type of vehicle suitable for the implementation of predictive intelligent concepts, due to the high investment cost compared to the sometimes relatively low operating cost savings.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Model-Based and Signal-Based Gearbox Sensor Fault Detection, Identification and Accommodation

2014-05-09
2014-01-9025
The emergence of tougher environmental legislations and ever increasing demand for increased ride comfort, fuel efficiency, and low emissions have triggered exploration and advances towards more efficient vehicle gearbox technologies. The growing complexity and spatial distribution of such a mechatronic gearbox demands precise timing and coordination of the embedded electronics, integrated sensors and actuators as well as excellent overall reliability. The increased gearbox distributed systems have seen an increased dependence on sensors for feedback control, predominantly relying on hardware redundancy for faults diagnosis. However, the conventional hardware redundancy has disadvantages due to increased costs, weight, volume, power requirements and failure rates. This paper presents a virtual position sensor-based Fault Detection, Isolation and Accommodation (FDIA), which generates an analytical redundancy for comparison against the actual sensor output.
Journal Article

Radio Frequency Diesel Particulate Filter Soot and Ash Level Sensors: Enabling Adaptive Controls for Heavy-Duty Diesel Applications

2014-09-30
2014-01-2349
Diesel Particulate Filters (DPF) are a key component in many on- and off-road aftertreatment systems to meet increasingly stringent particle emissions limits. Efficient thermal management and regeneration control is critical for reliable and cost-effective operation of the combined engine and aftertreatment system. Conventional DPF control systems predominantly rely on a combination of filter pressure drop measurements and predictive models to indirectly estimate the soot loading state of the filter. Over time, the build-up of incombustible ash, primarily derived from metal-containing lubricant additives, accumulates in the filter to levels far exceeding the DPF's soot storage limit. The combined effects of soot and ash build-up dynamically impact the filter's pressure drop response, service life, and fuel consumption, and must be accurately accounted for in order to optimize engine and aftertreatment system performance.
Journal Article

A High Functional Safety Performance Level Machine Controller for a Medium Size Agricultural Tractor

2014-09-30
2014-01-2421
Functional safety requirements and solutions are more expensive when it comes to lower cost machines with less power but same functionalities with respect to big machines. The paper will show a real Electronic Control Unit (ECU) design of a machine controller, controlling both engine working point, transmission, and other utilities like PTO, 4WD, brakes and Differential Lock; the ECU was designed in accordance to ISO 25119 regulation, to meet AgPL = C or even D for some functionalities. The unit is a fully redundant electronic control unit with two CAN networks and some special safe state oriented mechanism, that allow the Performance Level C with less software analysis requirements compared with traditional solutions. All safety critical sensors are redounded and singularly diagnosable, all command effects are directly observable and most of commands are directly diagnosable.
Journal Article

Integrating a New ECAD System with Service Publications

2013-09-24
2013-01-2408
Adoption of a new Electronic Systems Computer-Aided Design (ECAD) system for modeling electrical systems design by Product Engineering offers the promise of improved accuracy and productivity for Service Publication's authors to create wiring diagrams and to standardize their format; while improving the comprehension and functionality of those documents for service technicians. It is also potentially disruptive, requiring new workflows, processes, standards and lines of communication to be developed. This paper describes how to structure and organize a project for effectively and efficiently bringing a new ECAD system for modeling electrical system design into Service Publications. It also provides insight into some lessons learned.
Technical Paper

Overview of Truck Accidents in India and Its Economic Loss Estimation

2021-09-22
2021-26-0007
India contributed to 11% of the global road accidents and was ranked 1st among road deaths according to the latest World Health Organization (WHO) report 2018. Indian National Highways (NH) is a meagre 5% of the country’s road network but accounts for 55% of the road accidents and 61% of the road deaths. Majority of the freight traffic is ferried by Commercial Vehicles (CV) or trucks along these highways and this in turn increases the probability of them being involved in a road accident. The country’s economy is forecasted to thrive in the coming years and hence the requirement of CVs is aligned to international categorisation in the supply chain and shall play a pivotal role. In the year 2019, 13,532 road deaths were associated with CV occupants. The trucking industry is an unorganized sector wherein the illegal overloading of vehicles and over-the-limit driving hours pose a serious threat to road users.
Technical Paper

Development of Thermal Detection Device for Automotive Vehicles to Monitor Human Body Heat

2021-09-22
2021-26-0232
According to research studies, epidemics such as SARS, COVID-19 spread have caused huge negative impacts on population, health and the economy around the globe. The outbreak places a huge burden on international health systems that were already straining to address AIDS, tuberculosis, malaria, and a host of other conditions. Research has proven that incase infected person is not traced timely then the spread of infection in society will take the shape of large-scale community transmission. Most of the infections spread because they got unnoticed by the infected person. One part of the access checker scans is a person’s body temperature by measuring infrared radiation emitted by their skin. Fever screening by infrared thermal imaging has become more widespread following the SARS infection, and particularly during the pandemic H1N1 and COVID-19 outbreak. Skin temperature is measured without contact by monitoring the emitted infrared radiation.
Technical Paper

Effective Utilization of Low Carbon Fuels in Agricultural Engines Using Low Cost Electronic Primary Fuel Injection Unit

2020-04-14
2020-01-1369
Reliability and cost effectiveness of electronics demands its usage in all the wings of science and technology. Thus an attempt was made in this work to investigate the potential of using electronics for injecting primary fuel for the compression ignition engine used by farmers for agricultural purpose. In the first phase of the work, a new Electronic Control Unit (ECU) for primary fuel injection was developed and tested for its repeatability on fuel injection quantity for the different input voltages. Test engine was developed and tested under various load condition for its performance, emission, and combustion characteristics with neat diesel and Waste Cooking Oil Methyl Esters (WCOME) as baseline readings in the second phase of the work. In the third phase of work, the developed engine was modified to operate in duel fuel mode with developed ECU. In this work, ethanol was chosen as primary fuel due to its availability and less toxic nature as compared to other green fuels.
Journal Article

Complete Vehicle Standards for Heavy-Duty Trucking: Optimizing Freight Efficiency Benefits to Meet U.S. Greenhouse Gas Emission Standards

2015-09-29
2015-01-2772
For decades, the medium- and heavy-duty (“MD/HD”) commercial vehicle industry has focused on improving freight efficiency in order to lower customers' total operating costs. To optimize fuel efficiency, most manufacturers no longer focus on discreet components but instead look at the complete vehicle and operations. The path to future efficiency gains is not sufficiently clear when looking towards 2030; what is clear is that one solution will not work for all manufacturers or vehicle applications. Therefore, fuel efficiency regulations must be sufficiently adaptive to allow a variety of technical approaches to ensure the needs of the commercial truck market are met. This paper explores further the ideas presented in other papers that focus on regulation of engine-only emissions as an approach for HD vehicles.
Journal Article

AUTOSAR Model-Based Software Component Integration of Supplier Software

2015-09-29
2015-01-2848
AUTOSAR is finding its way into the automotive industry. European automotive manufacturing companies were the early adopters defining and promoting AUTOSAR standard. One of the main AUTOSAR goals is to improve containment of product and process complexity and risk. Increased scalability and flexibility to integrate and transfer functions is another important goal of AUTOSAR. Working with different suppliers and vendors and respect their confidentiality makes the process of application software development even more complex. Presented in this paper is a creative way of utilizing AUTOSAR to overcome the integration challenges in a multi-party object code based software integration. The run time environment (RTE) files for the application software are generated through a set of scripts to automate the process for consecutive releases. The low level device drivers are configured by one supplier and are being used by another supplier through a set of AUTOSAR client-server operation calls.
Journal Article

Lab-Based Testing of ADAS Applications for Commercial Vehicles

2015-09-29
2015-01-2840
Advanced driver assistance systems (ADAS) are becoming increasingly important for today's commercial vehicles. It is therefore crucial that different ADAS functionalities interact seamlessly with existing electronic control unit (ECU) networks. For example, autonomous emergency braking (AEB) systems directly influence the brake ECU and engine control. It has already become impossible to reliably validate this growing interconnectedness of control interventions in vehicle behavior with prototype vehicles alone. The relevant tests must be brought into the lab at an earlier development stage to evaluate ECU interaction automatically. This paper presents an approach for using hardware-in-the-loop (HIL) simulation to validate ECU networks for extremely diverse ADAS scenarios, while taking into account real sensor data. In a laboratory environment, the sensor systems based on radars, cameras, and maps are stimulated realistically with a combination of simulation and animation.
X